877 resultados para gastric anti-ulcer activity
Resumo:
Tuberculosis (TB) is a life threatening disease caused due to infection from Mycobacterium tuberculosis (Mtb). That most of the TB strains have become resistant to various existing drugs, development of effective novel drug candidates to combat this disease is a need of the day. In spite of intensive research world-wide, the success rate of discovering a new anti-TB drug is very poor. Therefore, novel drug discovery methods have to be tried. We have used a rule based computational method that utilizes a vertex index, named `distance exponent index (D-x)' (taken x = -4 here) for predicting anti-TB activity of a series of acid alkyl ester derivatives. The method is meant to identify activity related substructures from a series a compounds and predict activity of a compound on that basis. The high degree of successful prediction in the present study suggests that the said method may be useful in discovering effective anti-TB compound. It is also apparent that substructural approaches may be leveraged for wide purposes in computer-aided drug design.
Resumo:
New anti-tubercular agents, imidazo1,2-a]pyridine-2-carboxamide derivatives (5a-q) have been designed and synthesized. The structural considerations of the designed molecules were further supported by the docking study with a long-chain enoyl-acyl carrier protein reductase (InhA). The chemical structures of the new compounds were characterized by IR, H-1 NMR, C-13 NMR, HRMS and elemental analysis. In addition, single crystal X-ray diffraction has also been recorded for compound 5f. Compounds were evaluated in vitro against Mycobacterium tuberculosis H37Rv, and cytotoxicity against HEK-293T cell line. Amongst the tested compounds 5j, 5l and 5q were emerged as good anti-tubercular agents with low cytotoxicity. The structure-anti TB activity relationship of these derivatives was explained by molecular docking. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
A series of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazoles 9a-j were obtained via multistep synthesis from hydroxybenzophenones 4a-e. The cytotoxicity of compounds 9a-j was evaluated against human leukemia cell lilies (K562 and CEM). The compounds exhibited moderate to good anti-cancer activity with compounds 9b and 9i having a chloro group exhibiting the best activity (IC50 = 10 mu M). Compound 9i exhibited activity against both the cell lines and 9b only exhibited activity against CEM. Further, a lactate dehydrogenase (LDH) assay and DNA fragmentation studies of the compounds 9a-j were also performed. (C) 2013 Elsevier Masson SAS. All rights reserved.
Novel PARP inhibitors sensitize human leukemic cells in an endogenous PARP activity dependent manner
Resumo:
Poly(ADP-ribose) polymerase (PARP) is a critical nuclear enzyme which safeguards genome stability from genotoxic insults and helps in DNA repair. Inhibition of PARP results in sustained DNA damage in cancer cells. PARP inhibitors are known to play an important role in chemotherapy as single agents in many DNA repair pathway deficient tumor cells or in combination with several other chemotherapeutic agents. In the present study, we synthesize and characterize novel pyridazine derivatives, and evaluate their potential for use as PARP inhibitors. Results show that pyridazine derivatives inhibited the PARP1 enzymatic activity at the nanomolar range and showed anti-proliferative activity in leukemic cells. Interestingly, human leukemic cell line, Nalm6, in which PARP1 and PARP2 expression as well as intrinsic PARP activity are high, showed significant sensitivity for the novel inhibitors compared to other leukemic cells. Among the inhibitors, P10 showed maximum inhibition of intrinsic PARP activity and inhibited cell proliferation in Nalm6 cells. Besides P10 also showed maximum inhibition against purified PARP1 protein, which was comparable to olaparib in our assays. Newly synthesized compounds also showed remarkable DNA trapping ability, which is a signature feature of many PARP inhibitors. Importantly, P10 also induced late S and G2/M arrest in Nalm6 cells, indicating accumulation of DNA damage. Therefore, we identify P10 as a potential PARP inhibitor, which can be developed as a chemotherapeutic agent.
Resumo:
O gênero Pterodon pertence à família das Papilonaceas e inclui cinco espécies nativas do Brasil: P. pubescens Benth., P. emarginatus Vog., P. apparicioi Pedersoli e P. abruptus Benth., sendo a espécie objeto deste estudo a P. polygalaeflorus Benth.. Seus frutos são livremente comercializados em mercados da flora medicinal e utilizados pela medicina popular devido a propriedades anti-reumática, analgésica, antiinflamatória, dentre outros efeitos associados a esses frutos. O principal uso popular está relacionado ao efeito antiartrítico que parece se encontrar na fração oleosa do fruto. O objetivo deste trabalho foi avaliar o extrato etanólico de Pterodon polygalaeflorus (EEPpg) quanto ao seu potencial antiinflamatório crônico através do modelo de artrite induzida por colágeno (CIA) e seu efeito sobre os linfócitos in vitro, bem como sobre a expansão de células MAC-1+ induzida por adjuvante completo de Freund (AFC). A caracterização química do EEPpg foi realizada por cromatografia em camada delgada (TLC), cromatografia líquida de alta performance (HPLC) e cromatografia gasosa acoplada a espectrômetro de massa (GC-MS), através dos quais uma gama de compostos, incluindo terpenóides de polaridades variadas e flavonóides, foram observados. No modelo de CIA, o EEPpg reduziu significativamente parâmetros associados ao desenvolvimento e progressão da doença e à severidade da doença , inibindo em até 99% o seu desenvolvimento e levando a ausência de sinais clínicos evidentes após tratamento com as menores doses do extrato (0,01 mg/kg e 0,001 mg/kg). O tratamento com EEPpg também reduziu características histopatológicas típicas de articulações de animais com CIA, que também são observadas na artrite reumatóide. O EEPpg reduziu significativamente o peso dos linfonodos dos camundongos, bem como o número absoluto de segmentados, monócitos e linfócitos no sangue. In vitro, O EEPpg mostrou uma atividade anti-proliferativa dos esplenócitos estimulados com concanavalina A (Con A) ou lipopolissacarídeo (LPS) analisada através do ensaio de redução do sal de tetrazólio MTT, corroborada pelo seu efeito sobre o ciclo celular de linfócitos estimulados com Con A, onde o EEPpg nas concentrações de 5, 10 e 20 μg/mL reduziu significativamente, de maneira concentração-dependente, o número de células nas fases S+G2/M e aumentou na fase G0/G1 do ciclo celular. O efeito anti-proliferativo do EEPpg parece também estar associado ao aumento da apoptose dos linfócitos após estimulação com Con A, com aumento estatisticamente significativo no percentual de células mortas por apoptose nas maiores concentrações . O EEPpg inibiu a expansão de células Mac-1+ induzida por AFC no baço, porém não no peritônio. Esse resultado sugere um efeito inibidor do EEPpg sobre a migração celular para as articulações artríticas. Esses resultados contribuem para a validação do uso popular de P. polygalaeflorus contra doenças relacionadas a processos inflamatórios e imunes, sobretudo na artrite reumatóide, antes nunca demonstrado.
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating protein that has a wide range of pharmacological activities. The present study investigated the effectiveness of TCS on herpes simplex virus (HSV-1). The anti-viral activity and toxicity of TCS on Vero
Resumo:
Flazin isolated from the fruiting bodies of Suillus granulatus was found to possess weak anti-HIV activity (EC50=2.36 mu m, TI= 12.1). To establish a SAR study, 46 flazin analogues were synthesized, and their anti-HIV activities were evaluated in vitro. A
Resumo:
Camptothecin (CPT), a traditional anti-tumor drug, has been shown to possess anti-HIV-1 activity. To increase the antiviral potency, the anti-HIV activities of two CPT derivatives, 10-hydroxy-CPT and 7-hydroxymethyl-CPT, were evaluated in vitro. The therapy index (TI) of CPT, 10-hydroxy-CPT and 7-hydroxymethyl-CPT against HIV-1(IIIB) in C8166 were 24.2, 4.2 and 198.1, and against clinical isolated strain HIV-1(KM018) in PBMC were 10.3, 3.5 and 66.0, respectively. While the TI of CPT, 10-hydroxy-CPT and 7-hydroxymethyl-CPT against HIV-2(CBL-20) were 34.5, 10.7 and 317.0, respectively, and the TI of the three compounds against HIV-2(ROD) showed the similar values. However, when the antiviral mechanisms were considered, we found there was no inhibition of 7-hydroxymethyl-CPT on viral cell-to-cell transmission, and was no inhibition on reverse transcriptase, protease or integrase in cell-free systems. 7-Hydroxymethyl-CPT showed no selective killing of chronically infected cells after 3 days of incubation. In conclusion, 7-hydroxymethyl-CPT showed more potent anti-HIV activity, while 10-hydroxy-CPT had less efficient activity, compared with the parent CPT. Though the antiviral mechanisms remain to be further elucidated; the modification of -OH residues at C-7 of CPT could enhance the antiviral activity, while of -OH residues at C-10 of CPT had decreased the antiviral activity, which provides the preliminary modification strategy for anti-viral activities enhancement of this compound.
Resumo:
Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit OR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Crude polysaccharide extracts were obtained from aqueous extracts of the microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. The crude extracts were fractionated by ion-exchange chromatography on DEAE-cellulose columns. The molecular weights of the polysaccharides in each fraction were estimated by gel filtration on Sephacryl columns. The crude polysaccharide extracts of both microalgae showed anti-inflammatory activity in the carrageenan-induced paw edema test. In assays of effects on the delayed hyper-sensitivity response, and on phagocytic activity assayed in vivo and in vitro, the C. stigmatophora extract showed immunosuppressant effects, while the P. tricornutum extract showed immunostimulatory effects. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
A novel compound was synthesized and characterized by means of elemental analysis, IR and UV spectra, TG, CV and single crystal X-ray diffraction. The compound crystallized in an orthorhombic space group C222 with a=1. 622 4(3) nm, b=3. 498 4(7) nm, c=1. 301 5(3) nm, V=7. 387 (3) nm(3), Z=6, R-1= 0. 037 3, wR(2)=0. 114 0. The Ala (Ala = alanine) molecules were protonated at the amino nitrogen N (1) and the C (2) of Ala group with the terminal oxygen atom O(15), O(14), O(26) and O(27) of the polyoxometalates participating in the hydrogen bond network. The anti-tumor activity of the title compound was estimated against Hela and Pc-3m cancer cells.
Resumo:
Protein tyrosine phosphatase 1B (PTP1B) plays an important role as a negative regulator in insulin signaling pathways. PTP1B is an effective target for the treatment of type 2 diabetes mellitus. Four bromophenol derivatives from red algae Rhodomela confervoides, 2,2',3,3'-tetrabromo-4,4',5,5'-tetra-hydroxydiphenyl methane (1), 3-bormo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl) pyrocatechol (2), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (3) and 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxy-methyldiphenylmethane (4) showed significant inhibitory activity against PTP1B (IC50 were 2.4, 1.7, 1.5 and 0.84 mu mol/L, respectively) as potential therapeutical agents for the treatment of type 2 diabetes mellitus. The anti-hyperglycemic effects of the ethanol extracts from R. confervoides on streptozotocin-induced diabetes (STZ-diabetes) in male Wistar rats fed with high fat diet were investigated. The STZ-diabetic rats treated with medium-dose and high-dose alga extracts showed remarkable reductions in fasting blood glucose (FBG) as compared with the STZ-diabetic control. The results indicate that the in vivo anti-hyperglycemic activity of the R. confervoides extracts can be partially attributed to the inhibitory actions against PTP1B of the bromophenol derivatives and that may be of clinical importance in improving the management of type 2 diabetes mellitus.
Resumo:
This thesis outlines the design and effectuation of novel chemical routes towards a nascent class of functionalised quinoline-5,8-diones and the expansion of a series of contemporary quinazolinediones towards an innovative family of pyridinoquinazolinetetrone derivatives. This fragment based approach is envisaged to lead to advancements in the three scaffolds, expanding the SAR pool of both quinolines and quinazolinediones with subsequent evaluation of chemotherapeutic potential as well as furnishing a new class of tricycle for biological investigation. Development of novel quinoline-5,8-diones is provided for by expanding on existing methodology. Using a variety of nucleophiles on a critical intermediate, a broad range of novel compounds was afforded allowing chemotherapeutic potential to be assessed, while also serving as intermediates for accomplishing novel pyridinoquinazolinetetrone congeners. In order to incorporate functionality into our quinazolinedione template, an efficient synthetic strategy was constructed which provided a robust route to effectuate a highly derivatised pyrimidinedione ring. As derivatisation of this template is unreported our chief priority was to synthesise a range of diverse quinazolinediones. The application of annulation methodology using functionalised precursors provided a library of N-3 derivatised quinazolinedione analogues. These, along with their N-1 functionalised derivatives provide a wide scope from which to construct a series of pyridinoquinazolinetetrone derivatives while also serving as a unique class of molecules whose biological potential is uncharted. Although the actualisation of the pyridinoquinazolinetetrone was ultimately unsuccessful, our work has led to the development of novel quinoline-5,8-diones which were found to possess excellent anti-cancer activity when assessed by the NCI screen. Of the quinazolinediones synthesised eight compounds were accepted for screening by the NCI. Results from the single-dose tests however indicated that these compounds possessed little cytotoxic activity at 10 μM. The development of this novel template in conjunction with the highly active quinolinediones serves as an excellent rostrum for future synthetic endeavours.
Resumo:
Sigmoidin A (SGN) is a prenylated flavanone derivative of eriodictyol (ERD) with reported moderate antioxidant, antimicrobial and anti-inflammatory activity. Since ERD and other structurally similar antioxidant phenolic compounds have been shown to induce prooxidative macromolecular damage and cytotoxicity in cancer cells, the comparative in vitro effects of these structural analogues on cancer cell viability and Cu(II)-dependent DNA damage were studied. In the presence of Cu(II) ions, both SGN and ERD (7.4-236 µM) caused comparable concentration-dependent pBR322 plasmid DNA strand scission. The DNA damage induced by SGN and ERD could be abolished by ROS scavengers, glutathione (GSH) and catalase as well as EDTA and a specific Cu(I) chelator neocuproine. Both ERD and SGN readily reduce Cu(II) to Cu(I) suggesting a prooxidative mechanism of DNA damage. In a cell free system, ERD and SGN did also show comparable radical scavenging activity. SGN was, however, by an order of magnitude more cytotoxic to cancer cells than ERD and this effect was significantly attenuated by GSH suggesting a prooxidative mechanism of cell death. A depletion of intracellular GSH level by SGN in cancer cells is also demonstrated.
Resumo:
FK506 binding protein-like (FKBPL) and its peptide derivatives exert potent anti-angiogenic activity and and control tumour growth in xenograft models, when administered exogenously. However, the role of endogenous FKBPL in angiogenesis is not well characterised. Here we investigated the molecular effects of the endogenous protein and its peptide derivative, AD-01, leading to their anti-migratory activity. Inhibition of secreted FKBPL using a blocking antibody or siRNA-mediated knockdown of FKBPL accelerated the migration of human microvascular endothelial cells (HMEC-1). Furthermore, MDA-MB-231 tumour cells stably overexpressing FKBPL inhibited tumour vascular development suggesting that FKBPL secreted from tumour cells could inhibit angiogenesis. Whilst FKBPL and AD-01 target CD44, the nature of this interaction is not known and here we have further interrogated this aspect. We have demonstrated that FKBPL and AD-01 bind to the CD44 receptor and inhibit tumour cell migration in a CD44 dependant manner; CD44 knockdown abrogated AD-01 binding as well as its anti-migratory activity. Interestingly, FKBPL overexpression and knockdown or treatment with AD-01, regulated CD44 expression, suggesting a co-regulatory pathway for these two proteins. Downstream of CD44, alterations in the actin cytoskeleton, indicated by intense cortical actin staining and a lack of cell spreading and communication were observed following treatment with AD-01, explaining the anti-migratory phenotype. Concomitantly, AD-01 inhibited Rac-1 activity, up-regulated RhoA and the actin binding proteins, profilin and vinculin. Thus the anti-angiogenic protein, FKBPL, and AD-01, offer a promising and alternative approach for targeting both CD44 positive tumours and vasculature networks.