919 resultados para fuzzy genetic algorithms


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work the problem of defects location in power systems is formulated through a binary linear programming (BLP) model based on alarms historical database of control and protection devices from the system control center, sets theory of minimal coverage (AI) and protection philosophy adopted by the electric utility. In this model, circuit breaker operations are compared to their expected states in a strictly mathematical manner. For solving this BLP problem, which presents a great number of decision variables, a dedicated Genetic Algorithm (GA), is proposed. Control parameters of the GA, such as crossing over and mutation rates, population size, iterations number and population diversification, are calibrated in order to obtain efficiency and robustness. Results for a test system found in literature, are presented and discussed. © 2004 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper the genetic algorithm of Chu and Beasley (GACB) is applied to solve the static and multistage transmission expansion planning problem. The characteristics of the GACB, and some modifications that were done, to efficiently solve the problem described above are also presented. Results using some known systems show that the GACB is very efficient. To validate the GACB, we compare the results achieved using it with the results using other meta-heuristics like tabu-search, simulated annealing, extended genetic algorithm and hibrid algorithms. © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Motivated by rising drilling operation costs, the oil industry has shown a trend towards real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated to parameters modeling. One of the drill-bit performance evaluators, the Rate of Penetration (ROP), has been used in the literature as a drilling control parameter. However, the relationships between the operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on the Auto-Regressive with Extra Input Signals model, or ARX model, to accomplish the system identification and on a Genetic Algorithm (GA) to provide a robust control for the ROP. Results of simulations run over a real offshore oil field data, consisted of seven wells drilled with equal diameter bits, are provided. © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper a genetic algorithm based reconfiguration method is proposed to minimize the real power losses of distribution systems. The main innovation of this research work is that new types of crossover and mutation operators are proposed, such that the best possible results are obtained, with an acceptable computational effort. The crossover and mutation operators were developed so as to take advantage of the particular characteristics of distribution systems (as the radial topology). Simulation results indicate that the proposed method is very efficient, being able to find excellent configurations, with low computational effort, especially for larger systems. ©2007 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the short term transmission network expansion planning (STTNEP) is solved through a specialized genetic algorithm (SGA). A complete AC model of the transmission network is used, which permits the formulation of an integrated power system transmission network expansion planning problem (real and reactive power planning). The characteristics of the proposed SGA to solve the STTNEP problem are detailed and an interior point method is employed to solve nonlinear programming problems during the solution steps of the SGA. Results of tests carried out with two electrical energy systems show the capabilities of the SGA and also the viability of using the AC model to solve the STTNEP problem. © 2009 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a methodology to solve the transmission network expansion planning problem (TNEP) considering reliability and uncertainty in the demand. The proposed methodology provides an optimal expansion plan that allows the power system to operate adequately with an acceptable level of reliability and in an enviroment with uncertainness. The reliability criterion limits the expected value of the reliability index (LOLE - Loss Of Load Expectation) of the expanded system. The reliability is evaluated for the transmission system using an analytical technique based in enumeration. The mathematical model is solved, in a efficient way, using a specialized genetic algorithm of Chu-Beasley modified. Detailed results from an illustrative example are presented and discussed. © 2009 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last few years, crop rotation has gained attention due to its economic, environmental and social importance which explains why it can be highly beneficial for farmers. This paper presents a mathematical model for the Crop Rotation Problem (CRP) that was adapted from literature for this highly complex combinatorial problem. The CRP is devised to find a vegetable planting program that takes into account green fertilization restrictions, the set-aside period, planting restrictions for neighboring lots and for crop sequencing, demand constraints, while, at the same time, maximizing the profitability of the planted area. The main aim of this study is to develop a genetic algorithm and test it in a real context. The genetic algorithm involves a constructive heuristic to build the initial population and the operators of crossover, mutation, migration and elitism. The computational experiment was performed for a medium dimension real planting area with 16 lots, considering 29 crops of 10 different botanical families and a two-year planting rotation. Results showed that the algorithm determined feasible solutions in a reasonable computational time, thus proving its efficacy for dealing with this practical application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an application to traffic lights control in congested urban traffic, in real time, taking as input the position and route of the vehicles in the involved areas. This data is obtained from the communication between vehicles and infrastructure (V2I). Due to the great complexity of the possible combination of traffic lights and the short time to get a response, Genetic Algorithm was used to optimize this control. According to test results, the application can reduce the number of vehicles in congested areas, even with the entry of vehicles that previously were not being considered in these roads, such as parked vehicles. © 2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given. © 2012 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present paper solves the multi-level capacitated lot sizing problem with backlogging (MLCLSPB) combining a genetic algorithm with the solution of mixed-integer programming models and the improvement heuristic fix and optimize. This approach is evaluated over sets of benchmark instances and compared to methods from literature. Computational results indicate competitive results applying the proposed method when compared with other literature approaches. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Várias das técnicas tradicionais de Mineração de Dados têm sido aplicadas com êxito e outras esbarram em limitações, tanto no desempenho como na qualidade do conhecimento gerado. Pesquisas recentes têm demonstrado que as técnicas na área de IA, tais como Algoritmo Genético (AG) e Lógica Difusa (LD), podem ser utilizadas com sucesso. Nesta pesquisa o interesse é revisar algumas abordagens que utilizam AG em combinação com LD de forma híbrida para realizar busca em espaços grandes e complexos. Este trabalho apresenta o Algoritmo Genético (AG), utilizando Lógica Difusa, para a codificação, avaliação e reprodução dos cromossomos, buscando classificar dados através de regras extraídas de maneira automática com a evolução dos cromossomos. A Lógica Difusa é utilizada para deixar as regras mais claras e próximas da linguagem humana, utilizando representações lingüísticas para identificar dados contínuos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)