938 resultados para front end studies
Resumo:
射频识别(Radio Frequency Identification,RFID)技术,是一种利用射频通信实现的非接触式的数据采集和自动识别技术(以下通称RFID技术)。而超高频射频识别技术(Ultra High Frequency RFID,UHF RFID)具有识别距离远、识别准确率高、识别速度快、抗干扰能力强等特点而成为当前研发的热点。UHF RFID读写器的难点就在于射频前端电路和基带编解码的设计,它们设计的好坏直接决定了读写器的性能好坏。 本文首先通过介绍UHF RFID读写器射频前端设计的基本原理,采用射频通用收发模块进行射频前端设计的方法,给出了以ADF7020收发芯片为核心的UHF RFID读写器的射频前端的整体设计和具体的实现电路,设计了包括射频收发电路、射频前端匹配电路、滤波电路、环行器电路、功率放大电路等。 其次根据EPC Gen-2的协议标准进行了UHF RFID读写器的基带编码解码的仿真设计,然后开发了以FPGA为核心的完整的数字基带硬件电路,实际调试表明整个基带编解码软件在硬件基带PCB板上运行状况良好,并能对EPC Gen-2的协议标准的命令进行正确的编码解码。 最后通过研究学习软件无线电的理论和开发方法,把UHF RFID读写器的射频前端分成射频模拟前端和射频数字前端,给出了一种基于软件无线电思想的UHF RFID射频数字前端设计模型,并借助于SIMULINK中的信号处理工具箱对构建的数字前端的进行仿真验证,仿真结果验证了用软件无线电实现UHF RFID数字前端的可行性。
Resumo:
传统的火灾检测方法一般采用感烟、感温、感光探测器等进行探测。本文提出了一种嵌入式基于图像视觉特征的火灾检测方法,以TI公司的数字多媒体处理器TMS320DM642为核心,设计实现智能前端火灾探测与自动报警系统。通过DM642对视频图像进行采集并结合相应的智能图像处理与模式识别算法,对森林火险进行实时监控。实验结果表明,该系统比传统系统更进一步减少了误报率且具有响应快、监控范围广等优点。
Resumo:
As the largest and highest plateau on the Earth, the Tibetan Plateau has been a key location for understanding the processes of mountain building and plateau formation during India-Asia continent-continent collision. As the front-end of the collision, the geological structure of eastern Tibetan Plateau is very complex. It is ideal as a natural laboratory for investigating the formation and evolution of the Tibetan Plateau. Institute of Geophysics, Chinese Academy of Sciences (CAS) carried out MT survey from XiaZayii to Qingshuihe in the east part of the plateau in 1998. After error analysis and distortion analysis, the Non-linear Conjugate Gradient inversion(NLCG), Rapid Relaxation Inversin (RRI) and 2D OCCAM Inversion algorithms were used to invert the data. The three models obtained from 3 algorithms provided similar electrical structure and the NLCG model fit the observed data better than the other two models. According to the analysis of skin depth, the exploration depth of MT in Tibet is much more shallow than in stable continent. For example, the Schmucker depth at period 100s is less than 50km in Tibet, but more than 100km in Canadian Shield. There is a high conductivity layer at the depth of several kilometers beneath middle Qiangtang terrane, and almost 30 kilometers beneath northern Qiangtang terrane. The sensitivity analysis of the data predicates that the depth and resistivity of the crustal high conductivity layer are reliable. The MT results provide a high conductivity layer at 20~40km depth, where the seismic data show a low velocity zone. The experiments show that the rock will dehydrate and partially melt in the relative temperature and pressure. Fluids originated from dehydration and partial melting will seriously change rheological characteristics of rock. Therefore, This layer with low velocity and high conductivity layer in the crust is a weak layer. There is a low velocity path at the depth of 90-110 km beneath southeastern Tibetan Plateau and adjacent areas from seismology results. The analysis on the temperature and rheological property of the lithosphere show that the low velocity path is also weak. GPS measurements and the numerical simulation of the crust-mantle deformation show that the movement rate is different for different terranes. The regional strike derived from decomposition analysis for different frequency band and seismic anisotropy indicate that the crust and upper mantle move separately instead of as a whole. There are material flow in the eastern and southeastern Tibetan Plateau. Therefore, the faults, the crustal and upper mantle weak layers are three different boundaries for relatively movement. Those results support the "two layer wedge plates" geodynamic model on Tibetan formation and evolution.
Resumo:
Security policies are increasingly being implemented by organisations. Policies are mapped to device configurations to enforce the policies. This is typically performed manually by network administrators. The development and management of these enforcement policies is a difficult and error prone task. This thesis describes the development and evaluation of an off-line firewall policy parser and validation tool. This provides the system administrator with a textual interface and the vendor specific low level languages they trust and are familiar with, but the support of an off-line compiler tool. The tool was created using the Microsoft C#.NET language, and the Microsoft Visual Studio Integrated Development Environment (IDE). This provided an object environment to create a flexible and extensible system, as well as simple Web and Windows prototyping facilities to create GUI front-end applications for testing and evaluation. A CLI was provided with the tool, for more experienced users, but it was also designed to be easily integrated into GUI based applications for non-expert users. The evaluation of the system was performed from a custom built GUI application, which can create test firewall rule sets containing synthetic rules, to supply a variety of experimental conditions, as well as record various performance metrics. The validation tool was created, based around a pragmatic outlook, with regard to the needs of the network administrator. The modularity of the design was important, due to the fast changing nature of the network device languages being processed. An object oriented approach was taken, for maximum changeability and extensibility, and a flexible tool was developed, due to the possible needs of different types users. System administrators desire, low level, CLI-based tools that they can trust, and use easily from scripting languages. Inexperienced users may prefer a more abstract, high level, GUI or Wizard that has an easier to learn process. Built around these ideas, the tool was implemented, and proved to be a usable, and complimentary addition to the many network policy-based systems currently available. The tool has a flexible design and contains comprehensive functionality. As opposed to some of the other tools which perform across multiple vendor languages, but do not implement a deep range of options for any of the languages. It compliments existing systems, such as policy compliance tools, and abstract policy analysis systems. Its validation algorithms were evaluated for both completeness, and performance. The tool was found to correctly process large firewall policies in just a few seconds. A framework for a policy-based management system, with which the tool would integrate, is also proposed. This is based around a vendor independent XML-based repository of device configurations, which could be used to bring together existing policy management and analysis systems.
Resumo:
Despite the peer-to-peer community's obvious wish to have its systems adopted, specific mechanisms to facilitate incremental adoption have not yet received the same level of attention as the many other practical concerns associated with these systems. This paper argues that ease of adoption should be elevated to a first-class concern and accordingly presents HOLD, a front-end to existing DHTs that is optimized for incremental adoption. Specifically, HOLD is backwards-compatible: it leverages DNS to provide a key-based routing service to existing Internet hosts without requiring them to install any software. This paper also presents applications that could benefit from HOLD as well as the trade-offs that accompany HOLD. Early implementation experience suggests that HOLD is practical.
Resumo:
A new neural network architecture for spatial patttern recognition using multi-scale pyramida1 coding is here described. The network has an ARTMAP structure with a new class of ART-module, called Hybrid ART-module, as its front-end processor. Hybrid ART-module, which has processing modules corresponding to each scale channel of multi-scale pyramid, employs channels of finer scales only if it is necesssary to discriminate a pattern from others. This process is effected by serial match tracking. Also the parallel match tracking is used to select the spatial location having most salient feature and limit its attention to that part.
Resumo:
This thesis investigated the block copolymer (BCP) thin film characteristics and pattern formation using a set of predetermined molecular weights of PS-b-PMMA and PS-b-PDMS. Post BCP pattern fabrication on the required base substrate a dry plasma etch process was utilised for successful pattern transfer of the BCP resist onto underlying substrate. The resultant sub-10 nm device features were used in front end of line (FEoL) fabrication of active device components in integrated circuits (IC). The potential use of BCP templates were further extended to metal and metal-oxide nanowire fabrication. These nanowires were further investigated in real-time applications as novel sensors and supercapacitors.
Resumo:
Western manufacturing companies are developing innovative ways of delivering value that competes with the low cost paradigm. One such strategy is to deliver not only products, but systems that are closely aligned with the customer value proposition. These systems are comprised of integrated products and services, and are referred to as Product-Service Systems (PSS). A key challenge in PSS is supporting the design activity. In one sense, PSS design is a further extension of concurrent engineering that requires front-end input from the additional downstream sources of product service and maintenance. However, simply developing products and service packages is not sufficient: the new design challenge is the integrated system. This paper describes the development of a PSS data structure that can support this integrated design activity. The data structure is implemented in a knowledge base using the Protégé knowledge base editor.
Resumo:
Mobile ad hoc networking of dismounted combat personnel is expected to play an important role in the future of network-centric operations. High-speed, short-range, soldier-to-soldier wireless communications will be required to relay information on situational awareness, tactical instructions, and covert surveillance related data during special operations reconnaissance and other missions. This article presents some of the work commissioned by the U. K. Ministry of Defence to assess the feasibility of using 60 GHz millimeter-wave smart antenna technology to provide covert communications capable of meeting these stringent networking needs. Recent advances in RF front-end technology, alongside physical layer transmission schemes that could be employed in millimeter-wave soldier-mounted radio, are discussed. The introduction of covert communications between soldiers will require the development of a bespoke directive medium access layer. A number of adjustments to the IEEE 802.11 distribution coordination function that will enable directional communications are suggested. The successful implementation of future smart antenna technologies and direction of arrival-based protocols will be highly dependent on thorough knowledge of transmission channel characteristics prior to deployment. A novel approach to simulating dynamic soldier-to-soldier signal propagation using state-of-the-art animation-based technology developed for computer game design is described, and important channel metrics such as root mean square angle and delay spread for a team of four networked infantry soldiers over a range of indoor and outdoor environments is reported.
Resumo:
For Special Operations Forces, an important attribute of any future radio will be the ability to conceal transmissions from the enemy while transmitting large amounts of data for situational awareness and communications. These requirements will mean that military wireless systems designers will need to consider operating frequencies in the mm-wave bands: The high data rates that are achievable at these frequencies and the propagation characteristics at this wavelength will provide many benefits for the implementation of 'stealth radio'. This article discusses some of the recent advances in RF front-end technology, alongside physical layer transmission schemes that could be employed for millimeter-wave soldier-mounted radio. The operation of a hypothetical millimeter-wave soldier-to-soldier communications system that makes use of smart antenna technology is also described.
Resumo:
A new, front-end image processing chip is presented for real-time small object detection. It has been implemented using a 0.6 µ, 3.3 V CMOS technology and operates on 10-bit input data at 54 megasamples per second. It occupies an area of 12.9 mm×13.6 mm (including pads), dissipates 1.5 W, has 92 I/O pins and is to be housed in a 160-pin ceramic quarter flat-pack. It performs both one- and two-dimensional FIR filtering and a multilayer perceptron (MLP) neural network function using a reconfigurable array of 21 multiplication-accumulation cells which corresponds to a window size of 7×3. The chip can cope with images of 2047 pixels per line and can be cascaded to cope with larger window sizes. The chip performs two billion fixed point multiplications and additions per second.
Resumo:
In a dynamic reordering superscalar processor, the front-end fetches instructions and places them in the issue queue. Instructions are then issued by the back-end execution core. Till recently, the front-end was designed to maximize performance without considering energy consumption. The front-end fetches instructions as fast as it can until it is stalled by a filled issue queue or some other blocking structure. This approach wastes energy: (i) speculative execution causes many wrong-path instructions to be fetched and executed, and (ii) back-end execution rate is usually less than its peak rate, but front-end structures are dimensioned to sustained peak performance. Dynamically reducing the front-end instruction rate and the active size of front-end structure (e.g. issue queue) is a required performance-energy trade-off. Techniques proposed in the literature attack only one of these effects.
In previous work, we have proposed Speculative Instruction Window Weighting (SIWW) [21], a fetch gating technique that allows to address both fetch gating and instruction issue queue dynamic sizing. SIWW computes a global weight on the set of inflight instructions. This weight depends on the number and types of inflight instructions (non-branches, high confidence or low confidence branches, ...). The front-end instruction rate can be continuously adapted based on this weight. This paper extends the analysis of SIWW performed in previous work. It shows that SIWW performs better than previously proposed fetch gating techniques and that SIWW allows to dynamically adapt the size of the active instruction queue.
Resumo:
Background: Popular approaches in human tissue-based biomarker discovery include tissue microarrays (TMAs) and DNA Microarrays (DMAs) for protein and gene expression profiling respectively. The data generated by these analytic platforms, together with associated image, clinical and pathological data currently reside on widely different information platforms, making searching and cross-platform analysis difficult. Consequently, there is a strong need to develop a single coherent database capable of correlating all available data types.
Method: This study presents TMAX, a database system to facilitate biomarker discovery tasks. TMAX organises a variety of biomarker discovery-related data into the database. Both TMA and DMA experimental data are integrated in TMAX and connected through common DNA/protein biomarkers. Patient clinical data (including tissue pathological data), computer assisted tissue image and associated analytic data are also included in TMAX to enable the truly high throughput processing of ultra-large digital slides for both TMAs and whole slide tissue digital slides. A comprehensive web front-end was built with embedded XML parser software and predefined SQL queries to enable rapid data exchange in the form of standard XML files.
Results & Conclusion: TMAX represents one of the first attempts to integrate TMA data with public gene expression experiment data. Experiments suggest that TMAX is robust in managing large quantities of data from different sources (clinical, TMA, DMA and image analysis). Its web front-end is user friendly, easy to use, and most importantly allows the rapid and easy data exchange of biomarker discovery related data. In conclusion, TMAX is a robust biomarker discovery data repository and research tool, which opens up the opportunities for biomarker discovery and further integromics research.
Resumo:
The novel concept and architecture of the vertically stacked multistage circulator with a single source of dc magnetic bias has been proposed. The distinctive features of the new arrangement are discussed and the main aspects of the circulator design, including the dc magnetic bias and concurrent thermal stabilization of multiple junctions, are presented. The experimental prototype of the VHF stacked double isolator exhibits low loss, high isolation, excellent thermal stability and the high power handling capability. The proposed class of multistage circulators can significantly increase dynamic range of the transceivers for the RF front-end of the emerging white space UHF/VHF applications. © 2012 IEEE.
Resumo:
Modern wireless systems are expected to operate in multiple frequency bands and support diverse communications standards to provide the high volume and speed of data transmission. Today's major limitations of their performance are imposed by interference, spurious emission and noise generated by high-power carriers in antennas and passive components of the RF front-end. Passive Intermodulation (PIM), which causes the combinatorial frequency generation in the operational bands, presents a primary challenge to signal integrity, system efficacy and data throughput. © 2013 IEEE.