948 resultados para fixed-point arithmetic
Resumo:
Recently Ziman et al. [Phys. Rev. A 65, 042105 (2002)] have introduced a concept of a universal quantum homogenizer which is a quantum machine that takes as input a given (system) qubit initially in an arbitrary state rho and a set of N reservoir qubits initially prepared in the state xi. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state xi irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept of quantum homogenization for qudits, that is, for d-dimensional quantum systems. We prove that the partial-swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming state of a photon field is homogenized in an array of beam splitters. Using Simon's criterion, we study entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of output beams as a function of the degree of squeezing in input beams.
Resumo:
A new, front-end image processing chip is presented for real-time small object detection. It has been implemented using a 0.6 µ, 3.3 V CMOS technology and operates on 10-bit input data at 54 megasamples per second. It occupies an area of 12.9 mm×13.6 mm (including pads), dissipates 1.5 W, has 92 I/O pins and is to be housed in a 160-pin ceramic quarter flat-pack. It performs both one- and two-dimensional FIR filtering and a multilayer perceptron (MLP) neural network function using a reconfigurable array of 21 multiplication-accumulation cells which corresponds to a window size of 7×3. The chip can cope with images of 2047 pixels per line and can be cascaded to cope with larger window sizes. The chip performs two billion fixed point multiplications and additions per second.
Resumo:
An adaptation of bungee jumping, 'bungee running', involves participants attempting to run as far as they can whilst connected to an elastic rope which is anchored to a fixed point. Usually considered a safe recreational activity, we report a potentially life-threatening head injury following a bungee running accident.
Resumo:
We consider the behaviour of a set of services in a stressed web environment where performance patterns may be difficult to predict. In stressed environments the performances of some providers may degrade while the performances of others, with elastic resources, may improve. The allocation of web-based providers to users (brokering) is modelled by a strategic non-cooperative angel-daemon game with risk profiles. A risk profile specifies a bound on the number of unreliable service providers within an environment without identifying the names of these providers. Risk profiles offer a means of analysing the behaviour of broker agents which allocate service providers to users. A Nash equilibrium is a fixed point of such a game in which no user can locally improve their choice of provider – thus, a Nash equilibrium is a viable solution to the provider/user allocation problem. Angel daemon games provide a means of reasoning about stressed environments and offer the possibility of designing brokers using risk profiles and Nash equilibria.
Resumo:
Active network scanning injects traffic into a network and observes responses to draw conclusions about the network. Passive network analysis works by looking at network meta data or by analyzing traffic as it traverses a fixed point on the network. It may be infeasible or inappropriate to scan critical infrastructure networks. Techniques exist to uniquely map assets without resorting to active scanning. In many cases, it is possible to characterize and identify network nodes by passively analyzing traffic flows. These techniques are considered in particular with respect to their application to power industry critical infrastructure.
Resumo:
Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
The control of a crane carrying its payload by an elastic string corresponds to a task in which precise, indirect control of a subsystem dynamically coupled to a directly controllable subsystem is needed. This task is interesting since the coupled degree of freedom has little damping and it is apt to keep swinging accordingly. The traditional approaches apply the input shaping technology to assist the human operator responsible for the manipulation task. In the present paper a novel adaptive approach applying fixed point transformations based iterations having local basin of attraction is proposed to simultaneously tackle the problems originating from the imprecise dynamic model available for the system to be controlled and the swinging problem, too. The most important phenomenological properties of this approach are also discussed. The control considers the 4th time-derivative of the trajectory of the payload. The operation of the proposed control is illustrated via simulation results.
Resumo:
We prove a one-to-one correspondence between (i) C1+ conjugacy classes of C1+H Cantor exchange systems that are C1+H fixed points of renormalization and (ii) C1+ conjugacy classes of C1+H diffeomorphisms f with a codimension 1 hyperbolic attractor Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. However, we prove that there is no C1+alpha Cantor exchange system, with bounded geometry, that is a C1+alpha fixed point of renormalization with regularity alpha greater than the Hausdorff dimension of its invariant Cantor set.
Resumo:
We exhibit the construction of stable arc exchange systems from the stable laminations of hyperbolic diffeomorphisms. We prove a one-to-one correspondence between (i) Lipshitz conjugacy classes of C(1+H) stable arc exchange systems that are C(1+H) fixed points of renormalization and (ii) Lipshitz conjugacy classes of C(1+H) diffeomorphisms f with hyperbolic basic sets Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. Let HD(s)(Lambda) and HD(u)(Lambda) be, respectively, the Hausdorff dimension of the stable and unstable leaves intersected with the hyperbolic basic set L. If HD(u)(Lambda) = 1, then the Lipschitz conjugacy is, in fact, a C(1+H) conjugacy in (i) and (ii). We prove that if the stable arc exchange system is a C(1+HDs+alpha) fixed point of renormalization with bounded geometry, then the stable arc exchange system is smooth conjugate to an affine stable arc exchange system.
Resumo:
The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Dans ce mémoire, nous étudierons quelques propriétés algébriques, géométriques et topologiques des surfaces de Riemann compactes. Deux grand sujets seront traités. Tout d'abord, en utilisant le fait que toute surface de Riemann compacte de genre g plus grand ou égal à 2 possède un nombre fini de points de Weierstrass, nous allons pouvoir conclure que ces surfaces possèdent un nombre fini d'automorphismes. Ensuite, nous allons étudier de plus près la formule de trace d'Eichler. Ce théorème nous permet de trouver le caractère d'un automorphisme agissant sur l'espace des q-différentielles holomorphes. Nous commencerons notre étude en utilisant la quartique de Klein. Nous effectuerons un exemple de calcul utilisant le théorème d'Eichler, ce qui nous permettra de nous familiariser avec l'énoncé du théorème. Finalement, nous allons démontrer la formule de trace d'Eichler, en prenant soin de traiter le cas où l'automorphisme agit sans point fixe séparément du cas où l'automorphisme possède des points fixes.
Resumo:
This thesis is an attempt to initiate the development of a discrete geometry of the discrete plane H = {(qmxo,qnyo); m,n e Z - the set of integers}, where q s (0,1) is fixed and (xO,yO) is a fixed point in the first quadrant of the complex plane, xo,y0 ¢ 0. The discrete plane was first considered by Harman in 1972, to evolve a discrete analytic function theory for geometric difference functions. We shall mention briefly, through various sections, the principle of discretization, an outline of discrete a alytic function theory, the concept of geometry of space and also summary of work done in this thesis
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. This paper presents a novel double digit decimal multiplication (DDDM) technique that offers low latency and high throughput. This design performs two digit multiplications simultaneously in one clock cycle. Double digit fixed point decimal multipliers for 7digit, 16 digit and 34 digit are simulated using Leonardo Spectrum from Mentor Graphics Corporation using ASIC Library. The paper also presents area and delay comparisons for these fixed point multipliers on Xilinx, Altera, Actel and Quick logic FPGAs. This multiplier design can be extended to support decimal floating point multiplication for IEEE 754- 2008 standard.
Resumo:
Es werde das lineare Regressionsmodell y = X b + e mit den ueblichen Bedingungen betrachtet. Weiter werde angenommen, dass der Parametervektor aus einem Ellipsoid stammt. Ein optimaler Schaetzer fuer den Parametervektor ist durch den Minimax-Schaetzer gegeben. Nach der entscheidungstheoretischen Formulierung des Minimax-Schaetzproblems werden mit dem Bayesschen Ansatz, Spektralen Methoden und der Darstellung von Hoffmann und Laeuter Wege zur Bestimmung des Minimax- Schaetzers dargestellt und in Beziehung gebracht. Eine Betrachtung von Modellen mit drei Einflussgroeßen und gemeinsamen Eigenvektor fuehrt zu einer Strukturierung des Problems nach der Vielfachheit des maximalen Eigenwerts. Die Bestimmung des Minimax-Schaetzers in einem noch nicht geloesten Fall kann auf die Bestimmung einer Nullstelle einer nichtlinearen reellwertigen Funktion gefuehrt werden. Es wird ein Beispiel gefunden, in dem die Nullstelle nicht durch Radikale angegeben werden kann. Durch das Intervallschachtelungs-Prinzip oder Newton-Verfahren ist die numerische Bestimmung der Nullstelle moeglich. Durch Entwicklung einer Fixpunktgleichung aus der Darstellung von Hoffmann und Laeuter war es in einer Simulation moeglich die angestrebten Loesungen zu finden.