On the Betti number of the union of two generic map images
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
26/02/2014
20/05/2014
26/02/2014
20/05/2014
23/06/1999
|
Resumo |
Let f: M --> N and g: K --> N be generic differentiable maps of compact manifolds without boundary into a manifold such that their intersection satisfies a certain transversality condition. We show, under a certain cohomological condition, that if the images f(M) and g(K) intersect, then the (upsilon + 1)th Betti number of their union is strictly greater than the sum of their (upsilon + 1)th Betti numbers, where upsilon = dim M + dim K - dim N. This result is applied to the study of coincidence sets and fixed point sets. (C) 1999 Elsevier B.V. B.V. All rights reserved. |
Formato |
31-46 |
Identificador |
http://dx.doi.org/10.1016/S0166-8641(97)00273-3 Topology and Its Applications. Amsterdam: Elsevier B.V., v. 95, n. 1, p. 31-46, 1999. 0166-8641 http://hdl.handle.net/11449/25118 10.1016/S0166-8641(97)00273-3 WOS:000080833500002 2-s2.0-15944390989 WOS000080833500002.pdf |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Topology and its Applications |
Direitos |
openAccess |
Palavras-Chave | #generic map #Betti number #intersection map #coincidence set #fixed point set |
Tipo |
info:eu-repo/semantics/article |