873 resultados para eXtended finite element method
Resumo:
Cover title.
Finite element analysis of fault bend influence on stick-slip instability along an intra-plate fault
Resumo:
Earthquakes have been recognized as resulting from stick-slip frictional instabilities along the faults between deformable rocks. A three-dimensional finite-element code for modeling the nonlinear frictional contact behaviors between deformable bodies with the node-to-point contact element strategy has been developed and applied here to investigate the fault geometry influence on the nucleation and development process of the stick-slip instability along an intra-plate fault through a typical fault bend model, which has a pre-cut fault that is artificially bent by an angle of 5.6degrees at the fault center. The numerical results demonstrate that the geometry of the fault significantly affects nucleation, termination and restart of the stick-slip instability along the intra-plate fault, and all these instability phenomena can be well simulated using the current finite-element algorithm.
Finite element modeling of straightening of thin-walled seamless tubes of austenitic stainless steel
Resumo:
During this thesis work a coupled thermo-mechanical finite element model (FEM) was builtto simulate hot rolling in the blooming mill at Sandvik Materials Technology (SMT) inSandviken. The blooming mill is the first in a long line of processes that continuously or ingotcast ingots are subjected to before becoming finished products. The aim of this thesis work was twofold. The first was to create a parameterized finiteelement (FE) model of the blooming mill. The commercial FE software package MSCMarc/Mentat was used to create this model and the programing language Python was used toparameterize it. Second, two different pass schedules (A and B) were studied and comparedusing the model. The two pass series were evaluated with focus on their ability to healcentreline porosity, i.e. to close voids in the centre of the ingot. This evaluation was made by studying the hydrostatic stress (σm), the von Mises stress (σeq)and the plastic strain (εp) in the centre of the ingot. From these parameters the stress triaxiality(Tx) and the hydrostatic integration parameter (Gm) were calculated for each pass in bothseries using two different transportation times (30 and 150 s) from the furnace. The relationbetween Gm and an analytical parameter (Δ) was also studied. This parameter is the ratiobetween the mean height of the ingot and the contact length between the rolls and the ingot,which is useful as a rule of thumb to determine the homogeneity or penetration of strain for aspecific pass. The pass series designed with fewer passes (B), many with greater reduction, was shown toachieve better void closure theoretically. It was also shown that a temperature gradient, whichis the result of a longer holding time between the furnace and the blooming mill leads toimproved void closure.
Resumo:
Due to design and process-related factors, there are local variations in the microstructure and mechanical behaviour of cast components. This work establishes a Digital Image Correlation (DIC) based method for characterisation and investigation of the effects of such local variations on the behaviour of a high pressure, die cast (HPDC) aluminium alloy. Plastic behaviour is studied using gradient solidified samples and characterisation models for the parameters of the Hollomon equation are developed, based on microstructural refinement. Samples with controlled microstructural variations are produced and the observed DIC strain field is compared with Finite Element Method (FEM) simulation results. The results show that the DIC based method can be applied to characterise local mechanical behaviour with high accuracy. The microstructural variations are observed to cause a redistribution of strain during tensile loading. This redistribution of strain can be predicted in the FEM simulation by incorporating local mechanical behaviour using the developed characterization model. A homogeneous FEM simulation is unable to predict the observed behaviour. The results motivate the application of a previously proposed simulation strategy, which is able to predict and incorporate local variations in mechanical behaviour into FEM simulations already in the design process for cast components.
Resumo:
Com a necessidade de encontrar uma forma de ligar componentes de forma mais vantajosa, surgiram as ligações adesivas. Nos últimos anos, a utilização de juntas adesivas em aplicações industriais tem vindo a aumentar, substituindo alguns métodos de ligação tradicionais, por apresentarem vantagens tais como, redução de concentração de tensões, reduzido peso e facilidade de processamento/fabrico. O seu estudo permite prever a sua resistência e durabilidade. Este trabalho refere-se ao estudo de juntas de sobreposição simples (JSS), nas quais são aplicados os adesivos comerciais que variam desde frágeis e rígidos, como o caso do Araldite® AV138, até adesivos mais dúcteis, como o Araldite® 2015 e o Sikaforce® 7888. Estes são aplicados em substratos de alumínio (AL6082-T651) em juntas com diferentes geometrias e diferentes comprimentos de sobreposição (L), sendo sujeitos a esforços de tracção. Foi feita uma análise dos valores experimentais fornecidos e uma posterior comparação destes com diferentes métodos numéricos baseados em Elementos Finitos (EF). A comparação foi feita por uma análise de Modelos de Dano Coesivo (MDC) e segundo os critérios baseados em tensões e deformações do Método de Elementos Finitos Extendido (MEFE). A utilização destes métodos numéricos capazes de simular o comportamento das juntas poderá levar a uma poupança de recursos e de tempo. A análise por MDC revelou que este método é bastante preciso, excepto para os adesivos que sejam bastante dúcteis. A aplicação de uma outra lei coesiva pode solucionar esse problema. Por sua vez a análise por MEFE demonstrou que esta técnica não é particularmente adequada para o crescimento de dano em modo misto e, comparativamente com o MDC, a sua precisão é bastante inferior.
Resumo:
The integrity of multi-component structures is usually determined by their unions. Adhesive-bonding is often used over traditional methods because of the reduction of stress concentrations, reduced weight penalty, and easy manufacturing. Commercial adhesives range from strong and brittle (e.g., Araldite® AV138) to less strong and ductile (e.g., Araldite® 2015). A new family of polyurethane adhesives combines high strength and ductility (e.g., Sikaforce® 7888). In this work, the performance of the three above-mentioned adhesives was tested in single lap joints with varying values of overlap length (LO). The experimental work carried out is accompanied by a detailed numerical analysis by finite elements, either based on cohesive zone models (CZM) or the extended finite element method (XFEM). This procedure enabled detailing the performance of these predictive techniques applied to bonded joints. Moreover, it was possible to evaluate which family of adhesives is more suited for each joint geometry. CZM revealed to be highly accurate, except for largely ductile adhesives, although this could be circumvented with a different cohesive law. XFEM is not the most suited technique for mixed-mode damage growth, but a rough prediction was achieved.
Resumo:
As juntas adesivas têm vindo a ser usadas em diversas áreas e contam com inúmeras aplicações práticas. Devido ao fácil e rápido fabrico, as juntas de sobreposição simples (JSS) são um tipo de configuração bastante comum. O aumento da resistência, a redução de peso e a resistência à corrosão são algumas das vantagens que este tipo de junta oferece relativamente aos processos de ligação tradicionais. Contudo, a concentração de tensões nas extremidades do comprimento da ligação é uma das principais desvantagens. Existem poucas técnicas de dimensionamento precisas para a diversidade de ligações que podem ser encontradas em situações reais, o que constitui um obstáculo à utilização de juntas adesivas em aplicações estruturais. O presente trabalho visa comparar diferentes métodos analíticos e numéricos na previsão da resistência de JSS com diferentes comprimentos de sobreposição (LO). O objectivo fundamental é avaliar qual o melhor método para prever a resistência das JSS. Foram produzidas juntas adesivas entre substratos de alumínio utilizando um adesivo époxido frágil (Araldite® AV138), um adesivo epóxido moderadamente dúctil (Araldite® 2015), e um adesivo poliuretano dúctil (SikaForce® 7888). Consideraram-se diferentes métodos analíticos e dois métodos numéricos: os Modelos de Dano Coesivo (MDC) e o Método de Elementos Finitos Extendido (MEFE), permitindo a análise comparativa. O estudo possibilitou uma percepção crítica das capacidades de cada método consoante as características do adesivo utilizado. Os métodos analíticos funcionam apenas relativamente bem em condições muito específicas. A análise por MDC com lei triangular revelou ser um método bastante preciso, com excepção de adesivos que sejam bastante dúcteis. Por outro lado, a análise por MEFE demonstrou ser uma técnica pouco adequada, especialmente para o crescimento de dano em modo misto.
Resumo:
Los ensayos virtuales de materiales compuestos han aparecido como un nuevo concepto dentro de la industria aeroespacial, y disponen de un vasto potencial para reducir los enormes costes de certificación y desarrollo asociados con las tediosas campañas experimentales, que incluyen un gran número de paneles, subcomponentes y componentes. El objetivo de los ensayos virtuales es sustituir algunos ensayos por simulaciones computacionales con alta fidelidad. Esta tesis es una contribución a la aproximación multiescala desarrollada en el Instituto IMDEA Materiales para predecir el comportamiento mecánico de un laminado de material compuesto dadas las propiedades de la lámina y la intercara. La mecánica de daño continuo (CDM) formula el daño intralaminar a nivel constitutivo de material. El modelo de daño intralaminar se combina con elementos cohesivos para representar daño interlaminar. Se desarrolló e implementó un modelo de daño continuo, y se aplicó a configuraciones simples de ensayos en laminados: impactos de baja y alta velocidad, ensayos de tracción, tests a cortadura. El análisis del método y la correlación con experimentos sugiere que los métodos son razonablemente adecuados para los test de impacto, pero insuficientes para el resto de ensayos. Para superar estas limitaciones de CDM, se ha mejorado la aproximación discreta de elementos finitos enriqueciendo la cinemática para incluir discontinuidades embebidas: el método extendido de los elementos finitos (X-FEM). Se adaptó X-FEM para un esquema explícito de integración temporal. El método es capaz de representar cualitativamente los mecanismos de fallo detallados en laminados. Sin embargo, los resultados muestran inconsistencias en la formulación que producen resultados cuantitativos erróneos. Por último, se ha revisado el método tradicional de X-FEM, y se ha desarrollado un nuevo método para superar sus limitaciones: el método cohesivo X-FEM estable. Las propiedades del nuevo método se estudiaron en detalle, y se concluyó que el método es robusto para implementación en códigos explícitos dinámicos escalables, resultando una nueva herramienta útil para la simulación de daño en composites. Virtual testing of composite materials has emerged as a new concept within the aerospace industry. It presents a very large potential to reduce the large certification costs and the long development times associated with the experimental campaigns, involving the testing of a large number of panels, sub-components and components. The aim of virtual testing is to replace some experimental tests by high-fidelity numerical simulations. This work is a contribution to the multiscale approach developed in Institute IMDEA Materials to predict the mechanical behavior of a composite laminate from the properties of the ply and the interply. Continuum Damage Mechanics (CDM) formulates intraply damage at the the material constitutive level. Intraply CDM is combined with cohesive elements to model interply damage. A CDM model was developed, implemented, and applied to simple mechanical tests of laminates: low and high velocity impact, tension of coupons, and shear deformation. The analysis of the results and the comparison with experiments indicated that the performance was reasonably good for the impact tests, but insuficient in the other cases. To overcome the limitations of CDM, the kinematics of the discrete finite element approximation was enhanced to include mesh embedded discontinuities, the eXtended Finite Element Method (X-FEM). The X-FEM was adapted to an explicit time integration scheme and was able to reproduce qualitatively the physical failure mechanisms in a composite laminate. However, the results revealed an inconsistency in the formulation that leads to erroneous quantitative results. Finally, the traditional X-FEM was reviewed, and a new method was developed to overcome its limitations, the stable cohesive X-FEM. The properties of the new method were studied in detail, and it was demonstrated that the new method was robust and can be implemented in a explicit finite element formulation, providing a new tool for damage simulation in composite materials.
Resumo:
La modélisation de la cryolite, utilisée dans la fabrication de l’aluminium, implique plusieurs défis, notament la présence de discontinuités dans la solution et l’inclusion de la difference de densité entre les phases solide et liquide. Pour surmonter ces défis, plusieurs éléments novateurs ont été développés dans cette thèse. En premier lieu, le problème du changement de phase, communément appelé problème de Stefan, a été résolu en deux dimensions en utilisant la méthode des éléments finis étendue. Une formulation utilisant un multiplicateur de Lagrange stable spécialement développée et une interpolation enrichie a été utilisée pour imposer la température de fusion à l’interface. La vitesse de l’interface est déterminée par le saut dans le flux de chaleur à travers l’interface et a été calculée en utilisant la solution du multiplicateur de Lagrange. En second lieu, les effets convectifs ont été inclus par la résolution des équations de Stokes dans la phase liquide en utilisant la méthode des éléments finis étendue aussi. Troisièmement, le changement de densité entre les phases solide et liquide, généralement négligé dans la littérature, a été pris en compte par l’ajout d’une condition aux limites de vitesse non nulle à l’interface solide-liquide pour respecter la conservation de la masse dans le système. Des problèmes analytiques et numériques ont été résolus pour valider les divers composants du modèle et le système d’équations couplés. Les solutions aux problèmes numériques ont été comparées aux solutions obtenues avec l’algorithme de déplacement de maillage de Comsol. Ces comparaisons démontrent que le modèle par éléments finis étendue reproduit correctement le problème de changement phase avec densités variables.
Resumo:
As ligações adesivas têm sido utilizadas em diversas áreas de aplicação. A utilização das juntas adesivas em aplicações industriais tem vindo a aumentar nos últimos anos, por causa das vantagens significativas que apresentam comparativamente com os métodos tradicionais de ligação tais como soldadura, ligações aparafusadas e rebitadas. A redução de peso, redução de concentrações de tensões e facilidade de fabrico são algumas das principais vantagens das ligações adesivas. Devido à crescente utilização das ligações adesivas, torna-se necessário a existência de ferramentas que permitam prever a resistência das juntas com elevada precisão. Assim, para a análise de juntas adesivas, está a ser cada vez mais utilizado o método de Elementos Finitos. Neste âmbito o Método de Elementos Finitos eXtendido (MEFX) perfila-se como um método capaz de prever o comportamento da junta, embora este ainda não esteja convenientemente estudado no que diz respeito à aplicação a juntas adesivas. Neste trabalho é apresentado um estudo experimental e numérico pelo MEFX de juntas de sobreposição dupla, nas quais são aplicados adesivos que variam desde frágeis e rígidos, como o caso do Araldite® AV138, até adesivos mais dúcteis, como o Araldite® 2015 e o Sikaforce® 7888. Foram considerados substratos de alumínio (AW6082-T651) em juntas com diferentes comprimentos de sobreposição, sendo sujeitos a esforços de tração de forma a avaliar o seu desempenho. Na análise numérica foi realizada uma análise da distribuição de tensões na camada adesiva, a previsão da resistência das juntas pelo MEFX segundo critérios de iniciação de dano baseados em tensões e deformações, e ainda um estudo sobre o critério energético de propagação de dano. A análise por MEFX revelou que este método é bastante preciso quando usados os critérios de iniciação de dano MAXS e QUADS, e parâmetro com valor de 1 no critério energético de propagação de dano. Apesar de ser um método pouco estudado na literatura comparativamente com outros, o MEFX apresentou resultados muito satisfatórios.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.
Resumo:
In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.
Resumo:
Congresos y conferencias
Resumo:
Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towardsthe prediction of extended vertebral collapse may help in assessing fracture stability in future work.
Resumo:
Through progress in medical imaging, image analysis and finite element (FE) meshing tools it is now possible to extract patient-specific geometries from medical images of abdominal aortic aneurysms(AAAs), and thus to study clinically-relevant problems via FE simulations. Such simulations allow additional insight into human physiology in both healthy and diseased states. Medical imaging is most often performed in vivo, and hence the reconstructed model geometry in the problem of interest will represent the in vivo state, e.g., the AAA at physiological blood pressure. However, classical continuum mechanics and FE methods assume that constitutive models and the corresponding simulations begin from an unloaded, stress-free reference condition.