974 resultados para dynamic feature
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Dynamic analysis of on-board mass data to determine tampering in heavy vehicle on-board mass systems
Resumo:
Transport Certification Australia Limited, jointly with the National Transport Commission, has undertaken a project to investigate the feasibility of on-board mass monitoring (OBM) devices for regulatory purposes. OBM increases jurisdictional confidence in operational heavy vehicle compliance. This paper covers technical issues regarding potential use of dynamic data from OBM systems to indicate that tampering has occurred. Tamper-evidence and accuracy of current OBM systems needed to be determined before any regulatory schemes were put in place for its use. Tests performed to determine potential for, and ease of, tampering. An algorithm was developed to detect tamper events. Its results are detailed.
Resumo:
Wide-angle images exhibit significant distortion for which existing scale-space detectors such as the scale-invariant feature transform (SIFT) are inappropriate. The required scale-space images for feature detection are correctly obtained through the convolution of the image, mapped to the sphere, with the spherical Gaussian. A new visual key-point detector, based on this principle, is developed and several computational approaches to the convolution are investigated in both the spatial and frequency domain. In particular, a close approximation is developed that has comparable computation time to conventional SIFT but with improved matching performance. Results are presented for monocular wide-angle outdoor image sequences obtained using fisheye and equiangular catadioptric cameras. We evaluate the overall matching performance (recall versus 1-precision) of these methods compared to conventional SIFT. We also demonstrate the use of the technique for variable frame-rate visual odometry and its application to place recognition.
Resumo:
We present a technique for high-dynamic range stereo for outdoor mobile robot applications. Stereo pairs are captured at a number of different exposures (exposure bracketing), and combined by projecting the 3D points into a common coordinate frame, and building a 3D occupancy map. We present experimental results for static scenes with constant and dynamic lighting as well as outdoor operation with variable and high contrast lighting conditions.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.
Resumo:
A virtual fence is created by applying an aversive stimulus to an animal when it approaches a predefined boundary. It is implemented by a small animal-borne computer system with a GPS receiver. This approach allows the implementation of virtual paddocks inside a normal physically-fenced paddock. Since the fence lines are virtual they can be moved by programming to meet the needs of animal or land management. This approach enables us to consider animals as agents with natural mobility that are controllable and to apply a vast body of theory in motion planning. In this paper we describe a herd-animal simulator and physical experiments conducted on a small herd of 10 animals using a Smart Collar. The Smart Collar consists of a GPS, PDA, wireless networking and a sound amplifier. We describe a motion planning algorithm that can move a virtual paddock subject to landscape constraints which is suitable for mustering cows. We present simulation results and data from experiments with 8 cows equipped with Smart Collars.
Resumo:
This paper discusses the development of a dynamic model for a torpedo shaped sub- marine. Expressions for hydrostatic, added mass, hydrodynamic, control surface and pro- peller forces and moments are derived from first principles. Experimental data obtained from flume tests of the submarine are inserted into the model in order to provide computer simulations of the open loop behavior of the system.
Resumo:
In this paper we present a model for defining and enforcing a fine-grained information flow policy. We describe how the policy can be enforced on a typical computer and present experiments using the proposed model. A key feature of the model is that it allows the expression of rules which detail precisely which information elements are allowed to mix together. For example, the model allows the expression of a policy which forbids a doctor from mixing the personal medical details of the patients. The enforcement mechanisms tracks and records information flows within the system so that dynamic changes to the policy can be made with respect to information elements which may have propagated to different locations in the system.
Resumo:
Background Some dialysis patients fail to comply with their fluid restriction causing problems due to volume overload. These patients sometimes blame excessive thirst. There has been little work in this area and no work documenting polydipsia among peritoneal dialysis (PD) patients. Methods We measured motivation to drink and fluid consumption in 46 haemodialysis patients (HD), 39 PD patients and 42 healthy controls (HC) using a modified palmtop computer to collect visual analogue scores at hourly intervals. Results Mean thirst scores were markedly depressed on the dialysis day (day 1) for HD (P<0.0001). The profile for day 2 was similar to that of HC. PD generated consistently higher scores than HD day 1 and HC (P = 0.01 vs. HC and P<0.0001 vs HD day 1). Reported mean daily water consumption was similar for HD and PD with both significantly less than HC (P<0.001 for both). However, measured fluid losses were similar for PD and HC whilst HD were lower (P<0.001 for both) suggesting that the PD group may have underestimated their fluid intake. Conclusion Our results indicate that HD causes a protracted period of reduced thirst but that the population's thirst perception is similar to HC on the interdialytic day despite a reduced fluid intake. In contrast, the PD group recorded high thirst scores throughout the day and were apparently less compliant with their fluid restriction. This is potentially important because the volume status of PD patients influences their survival.
Resumo:
Intelligent surveillance systems typically use a single visual spectrum modality for their input. These systems work well in controlled conditions, but often fail when lighting is poor, or environmental effects such as shadows, dust or smoke are present. Thermal spectrum imagery is not as susceptible to environmental effects, however thermal imaging sensors are more sensitive to noise and they are only gray scale, making distinguishing between objects difficult. Several approaches to combining the visual and thermal modalities have been proposed, however they are limited by assuming that both modalities are perfuming equally well. When one modality fails, existing approaches are unable to detect the drop in performance and disregard the under performing modality. In this paper, a novel middle fusion approach for combining visual and thermal spectrum images for object tracking is proposed. Motion and object detection is performed on each modality and the object detection results for each modality are fused base on the current performance of each modality. Modality performance is determined by comparing the number of objects tracked by the system with the number detected by each mode, with a small allowance made for objects entering and exiting the scene. The tracking performance of the proposed fusion scheme is compared with performance of the visual and thermal modes individually, and a baseline middle fusion scheme. Improvement in tracking performance using the proposed fusion approach is demonstrated. The proposed approach is also shown to be able to detect the failure of an individual modality and disregard its results, ensuring performance is not degraded in such situations.
Resumo:
This paper treats the crush behaviour and energy absorption response of foam-filled conical tubes subjected to oblique impact loading. Dynamic computer simulation techniques validated by experimental testing are used to carry out a parametric study of such devices. The study aims at quantifying the energy absorption of empty and foam-filled conical tubes under oblique impact loading, for variations in the load angle and geometry parameters of the tube. It is evident that foam-filled conical tubes are preferable as impact energy absorbers due to their ability to withstand oblique impact loads as effectively as axial impact loads. Furthermore, it is found that the energy absorption capacity of filled tubes is better maintained compared to that of empty tubes as the load orientation increases. The primary outcome of this study is design information for the use of foam-filled conical tubes as energy absorbers where oblique impact loading is expected.
Resumo:
The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.