950 resultados para data structures


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão Empresarial, Faculdade de Economia, Universidade do Algarve, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a cloud-based software platform for sharing publicly available scientific datasets. The proposed platform leverages the potential of NoSQL databases and asynchronous IO technologies, such as Node.JS, in order to achieve high performances and flexible solutions. This solution will serve two main groups of users. The dataset providers, which are the researchers responsible for sharing and maintaining datasets, and the dataset users, that are those who desire to access the public data. To the former are given tools to easily publish and maintain large volumes of data, whereas the later are given tools to enable the preview and creation of subsets of the original data through the introduction of filter and aggregation operations. The choice of NoSQL over more traditional RDDMS emerged from and extended benchmark between relational databases (MySQL) and NoSQL (MongoDB) that is also presented in this thesis. The obtained results come to confirm the theoretical guarantees that NoSQL databases are more suitable for the kind of data that our system users will be handling, i. e., non-homogeneous data structures that can grow really fast. It is envisioned that a platform like this can lead the way to a new era of scientific data sharing where researchers are able to easily share and access all kinds of datasets, and even in more advanced scenarios be presented with recommended datasets and already existing research results on top of those recommendations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a cloud-based software platform for sharing publicly available scientific datasets. The proposed platform leverages the potential of NoSQL databases and asynchronous IO technologies, such as Node.JS, in order to achieve high performances and flexible solutions. This solution will serve two main groups of users. The dataset providers, which are the researchers responsible for sharing and maintaining datasets, and the dataset users, that are those who desire to access the public data. To the former are given tools to easily publish and maintain large volumes of data, whereas the later are given tools to enable the preview and creation of subsets of the original data through the introduction of filter and aggregation operations. The choice of NoSQL over more traditional RDDMS emerged from and extended benchmark between relational databases (MySQL) and NoSQL (MongoDB) that is also presented in this thesis. The obtained results come to confirm the theoretical guarantees that NoSQL databases are more suitable for the kind of data that our system users will be handling, i. e., non-homogeneous data structures that can grow really fast. It is envisioned that a platform like this can lead the way to a new era of scientific data sharing where researchers are able to easily share and access all kinds of datasets, and even in more advanced scenarios be presented with recommended datasets and already existing research results on top of those recommendations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first mechanical Automaton concept was found in a Chinese text written in the 3rd century BC, while Computer Vision was born in the late 1960s. Therefore, visual perception applied to machines (i.e. the Machine Vision) is a young and exciting alliance. When robots came in, the new field of Robotic Vision was born, and these terms began to be erroneously interchanged. In short, we can say that Machine Vision is an engineering domain, which concern the industrial use of Vision. The Robotic Vision, instead, is a research field that tries to incorporate robotics aspects in computer vision algorithms. Visual Servoing, for example, is one of the problems that cannot be solved by computer vision only. Accordingly, a large part of this work deals with boosting popular Computer Vision techniques by exploiting robotics: e.g. the use of kinematics to localize a vision sensor, mounted as the robot end-effector. The remainder of this work is dedicated to the counterparty, i.e. the use of computer vision to solve real robotic problems like grasping objects or navigate avoiding obstacles. Will be presented a brief survey about mapping data structures most widely used in robotics along with SkiMap, a novel sparse data structure created both for robotic mapping and as a general purpose 3D spatial index. Thus, several approaches to implement Object Detection and Manipulation, by exploiting the aforementioned mapping strategies, will be proposed, along with a completely new Machine Teaching facility in order to simply the training procedure of modern Deep Learning networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analytics is the technology working with the manipulation of data to produce information able to change the world we live every day. Analytics have been largely used within the last decade to cluster people’s behaviour to predict their preferences of items to buy, music to listen, movies to watch and even electoral preference. The most advanced companies succeded in controlling people’s behaviour using analytics. Despite the evidence of the super-power of analytics, they are rarely applied to the big data collected within supply chain systems (i.e. distribution network, storage systems and production plants). This PhD thesis explores the fourth research paradigm (i.e. the generation of knowledge from data) applied to supply chain system design and operations management. An ontology defining the entities and the metrics of supply chain systems is used to design data structures for data collection in supply chain systems. The consistency of this data is provided by mathematical demonstrations inspired by the factory physics theory. The availability, quantity and quality of the data within these data structures define different decision patterns. Ten decision patterns are identified, and validated on-field, to address ten different class of design and control problems in the field of supply chain systems research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Context. B[e] supergiants are luminous, massive post-main sequence stars exhibiting non-spherical winds, forbidden lines, and hot dust in a disc-like structure. The physical properties of their rich and complex circumstellar environment (CSE) are not well understood, partly because these CSE cannot be easily resolved at the large distances found for B[e] supergiants (typically greater than or similar to 1 kpc). Aims. From mid-IR spectro-interferometric observations obtained with VLTI/MIDI we seek to resolve and study the CSE of the Galactic B[e] supergiant CPD-57 degrees 2874. Methods. For a physical interpretation of the observables (visibilities and spectrum) we use our ray-tracing radiative transfer code (FRACS), which is optimised for thermal spectro-interferometric observations. Results. Thanks to the short computing time required by FRACS (<10 s per monochromatic model), best-fit parameters and uncertainties for several physical quantities of CPD-57 degrees 2874 were obtained, such as inner dust radius, relative flux contribution of the central source and of the dusty CSE, dust temperature profile, and disc inclination. Conclusions. The analysis of VLTI/MIDI data with FRACS allowed one of the first direct determinations of physical parameters of the dusty CSE of a B[e] supergiant based on interferometric data and using a full model-fitting approach. In a larger context, the study of B[e] supergiants is important for a deeper understanding of the complex structure and evolution of hot, massive stars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data mining can be defined as the extraction of previously unknown and potentially useful information from large datasets. The main principle is to devise computer programs that run through databases and automatically seek deterministic patterns. It is applied in different fields of application, e.g., remote sensing, biometry, speech recognition, but has seldom been applied to forensic case data. The intrinsic difficulty related to the use of such data lies in its heterogeneity, which comes from the many different sources of information. The aim of this study is to highlight potential uses of pattern recognition that would provide relevant results from a criminal intelligence point of view. The role of data mining within a global crime analysis methodology is to detect all types of structures in a dataset. Once filtered and interpreted, those structures can point to previously unseen criminal activities. The interpretation of patterns for intelligence purposes is the final stage of the process. It allows the researcher to validate the whole methodology and to refine each step if necessary. An application to cutting agents found in illicit drug seizures was performed. A combinatorial approach was done, using the presence and the absence of products. Methods coming from the graph theory field were used to extract patterns in data constituted by links between products and place and date of seizure. A data mining process completed using graphing techniques is called ``graph mining''. Patterns were detected that had to be interpreted and compared with preliminary knowledge to establish their relevancy. The illicit drug profiling process is actually an intelligence process that uses preliminary illicit drug classes to classify new samples. Methods proposed in this study could be used \textit{a priori} to compare structures from preliminary and post-detection patterns. This new knowledge of a repeated structure may provide valuable complementary information to profiling and become a source of intelligence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silicon carbide, which has many polytypic modifications of a very simple and very symmetric structure, is an excellent model system for exploring, the relationship between chemical shift, long-range dipolar shielding, and crystal structure in network solids. A simple McConnell equation treatment of bond anisotropy effects in a poly type predicts chemical shifts for silicon and carbon sites which agree well with the experiment, provided that contributions from bonds up to 100 A are included in the calculation. The calculated chemical shifts depend on three factors: the layer stacking sequence, electrical centre of gravity, and the spacings between silicon and carbon layers. The assignment of peaks to lattice sites is proved possible for three polytypes (6H, 15R, and 3C). The fact that the calculated chemical shifts are very sensitive to layer spacings provides us a potential way to detennine and refine a crystal structure. In this work, the layer spacings of 6H SiC have been calculated and are within X-ray standard deviations. Under this premise, the layer spacings of 15R have been detennined. 29Si and 13C single crystal nmr studies of 6H SiC polytype indicate that all silicons and carbons are magnetically anisotropic. The relationship between a magnetic shielding tensor component and layer spacings has been derived. The comparisons between experimental and semi-empirical chemical shielding tensor components indicate that the paramagnetic shielding of silicon should be included in the single crystal chemical shift calculation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Convectively coupled equatorial waves are fundamental components of the interaction between the physics and dynamics of the tropical atmosphere. A new methodology, which isolates individual equatorial wave modes, has been developed and applied to observational data. The methodology assumes that the horizontal structures given by equatorial wave theory can be used to project upper- and lower-tropospheric data onto equatorial wave modes. The dynamical fields are first separated into eastward- and westward-moving components with a specified domain of frequency–zonal wavenumber. Each of the components for each field is then projected onto the different equatorial modes using the y structures of these modes given by the theory. The latitudinal scale yo of the modes is predetermined by data to fit the equatorial trapping in a suitable latitude belt y = ±Y. The extent to which the different dynamical fields are consistent with one another in their depiction of each equatorial wave structure determines the confidence in the reality of that structure. Comparison of the analyzed modes with the eastward- and westward-moving components in the convection field enables the identification of the dynamical structure and nature of convectively coupled equatorial waves. In a case study, the methodology is applied to two independent data sources, ECMWF Reanalysis and satellite-observed window brightness temperature (Tb) data for the summer of 1992. Various convectively coupled equatorial Kelvin, mixed Rossby–gravity, and Rossby waves have been detected. The results indicate a robust consistency between the two independent data sources. Different vertical structures for different wave modes and a significant Doppler shifting effect of the background zonal winds on wave structures are found and discussed. It is found that in addition to low-level convergence, anomalous fluxes induced by strong equatorial zonal winds associated with equatorial waves are important for inducing equatorial convection. There is evidence that equatorial convection associated with Rossby waves leads to a change in structure involving a horizontal structure similar to that of a Kelvin wave moving westward with it. The vertical structure may also be radically changed. The analysis method should make a very powerful diagnostic tool for investigating convectively coupled equatorial waves and the interaction of equatorial dynamics and physics in the real atmosphere. The results from application of the analysis method for a reanalysis dataset should provide a benchmark against which model studies can be compared.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The compounds chlorothiazide and hydrochlorothiazide (crystalline form II) have been studied in their fully hydrogenous forms by powder neutron diffraction on the GEM diffractometer. The results of joint Rietveld refinement of the structures against multi-bank neutron and single-bank X-ray powder data are reported and show that accurate and precise structural information can be obtained from polycrystalline molecular organic materials by this route.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A program is provided to determine structural parameters of atoms in or adsorbed on surfaces by refinement of atomistic models towards experimentally determined data generated by the normal incidence X-ray standing wave (NIXSW) technique. The method employs a combination of Differential Evolution Genetic Algorithms and Steepest Descent Line Minimisations to provide a fast, reliable and user friendly tool for experimentalists to interpret complex multidimensional NIXSW data sets.