990 resultados para conditional relative entropy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (approx 400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multi-player nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM–test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of five frequently traded stocks in the S&P 500 stock index completes the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active learning approaches reduce the annotation cost required by traditional supervised approaches to reach the same effectiveness by actively selecting informative instances during the learning phase. However, effectiveness and robustness of the learnt models are influenced by a number of factors. In this paper we investigate the factors that affect the effectiveness, more specifically in terms of stability and robustness, of active learning models built using conditional random fields (CRFs) for information extraction applications. Stability, defined as a small variation of performance when small variation of the training data or a small variation of the parameters occur, is a major issue for machine learning models, but even more so in the active learning framework which aims to minimise the amount of training data required. The factors we investigate are a) the choice of incremental vs. standard active learning, b) the feature set used as a representation of the text (i.e., morphological features, syntactic features, or semantic features) and c) Gaussian prior variance as one of the important CRFs parameters. Our empirical findings show that incremental learning and the Gaussian prior variance lead to more stable and robust models across iterations. Our study also demonstrates that orthographical, morphological and contextual features as a group of basic features play an important role in learning effective models across all iterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim The aim of this reflective account is to provide a view of the intensive care unit (ICU) relative’s experiences of supporting and being supported in the ICU. Background Understanding the relatives’ experiences of ICU is important especially because a recent work has identified the potential for this group to develop post-traumatic stress disorder, a condition that is normally equated with the ICU survivor. Design A thematic analysis was used in identifying emerging themes that would be significant in an ICU nursing context. Setting The incident took place in two 8-bedded ICUs (Private and National Health Service) in October. Results Two emergent themes were identified from the reflective story – fear of the technological environment and feeling hopeless and helpless. Conclusion The use of relative stories as an insight into the live experiences of ICU relatives may give a deeper understanding of their life-world. The loneliness, anguish and pain of the ICU relative extends beyond the walls of the ICU, and this is often negated as the focus of the ICU team is the patient. Relevance to clinical practice: Developing strategies to support relatives might include the use of relative diaries used concurrently with patient diaries to support this groups recovery or at the very least a gaining a sense of understanding for their ICU experience. Relative follow-up clinics designed specifically to meet their needs where support and advice can be given by the ICU team, in addition to making timely and appropriate referrals to counselling services and perhaps involving spiritual leaders where appropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background A novel avian influenza A (H7N9) virus was first found in humans in Shanghai, and infected over 433 patients in China. To date, very little is known about the spatiotemporal variability or environmental drivers of the risk of H7N9 infection. This study explored the spatial and temporal variation of H7N9 infection and assessed the effects of temperature and rainfall on H7N9 incidence. Methods A Bayesian spatial conditional autoregressive (CAR) model was used to assess the spatiotemporal distribution of the risk of H7N9 infection in Shanghai, by district and fortnight for the period 19th February–14th April 2013. Data on daily laboratory-confirmed H7N9 cases, and weather variability including temperature (°C) and rainfall (mm) were obtained from the Chinese Information System for Diseases Control and Prevention and Chinese Meteorological Data Sharing Service System, respectively, and aggregated by fortnight. Results High spatial variations in the H7N9 risk were mainly observed in the east and centre of Shanghai municipality. H7N9 incidence rate was significantly associated with fortnightly mean temperature (Relative Risk (RR): 1.54; 95% credible interval (CI): 1.22–1.94) and fortnightly mean rainfall (RR: 2.86; 95% CI: 1.47–5.56). Conclusion There was a substantial variation in the spatiotemporal distribution of H7N9 infection across different districts in Shanghai. Optimal temperature and rainfall may be one of the driving forces for H7N9.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relative abundance data is common in the life sciences, but appreciation that it needs special analysis and interpretation is scarce. Correlation is popular as a statistical measure of pairwise association but should not be used on data that carry only relative information. Using timecourse yeast gene expression data, we show how correlation of relative abundances can lead to conclusions opposite to those drawn from absolute abundances, and that its value changes when different components are included in the analysis. Once all absolute information has been removed, only a subset of those associations will reliably endure in the remaining relative data, specifically, associations where pairs of values behave proportionally across observations. We propose a new statistic φ to describe the strength of proportionality between two variables and demonstrate how it can be straightforwardly used instead of correlation as the basis of familiar analyses and visualization methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The impact of socio-environmental factors on suicide has been examined in many studies. Few of them, however, have explored these associations from a spatial perspective, especially in assessing the association between meteorological factors and suicide. This study examined the association of meteorological and socio-demographic factors with suicide across small areas over different time periods. Methods Suicide, population and socio-demographic data (e.g., population of Aboriginal and Torres Strait Islanders (ATSI), and unemployment rate (UNE) at the Local Government Area (LGA) level were obtained from the Australian Bureau of Statistics for the period of 1986 to 2005. Information on meteorological factors (rainfall, temperature and humidity) was supplied by Australian Bureau of Meteorology. A Bayesian Conditional Autoregressive (CAR) Model was applied to explore the association of socio-demographic and meteorological factors with suicide across LGAs. Results In Model I (socio-demographic factors), proportion of ATSI and UNE were positively associated with suicide from 1996 to 2000 (Relative Risk (RR)ATSI = 1.0107, 95% Credible Interval (CI): 1.0062-1.0151; RRUNE = 1.0187, 95% CI: 1.0060-1.0315), and from 2001 to 2005 (RRATSI = 1.0126, 95% CI: 1.0076-1.0176; RRUNE = 1.0198, 95% CI: 1.0041-1.0354). Socio-Economic Index for Area (SEIFA) and IND, however, had negative associations with suicide between 1986 and 1990 (RRSEIFA = 0.9983, 95% CI: 0.9971-0.9995; RRATSI = 0.9914, 95% CI: 0.9848-0.9980). Model II (meteorological factors): a 1°C higher yearly mean temperature across LGAs increased the suicide rate by an average by 2.27% (95% CI: 0.73%, 3.82%) in 1996–2000, and 3.24% (95% CI: 1.26%, 5.21%) in 2001–2005. The associations between socio-demographic factors and suicide in Model III (socio-demographic and meteorological factors) were similar to those in Model I; but, there is no substantive association between climate and suicide in Model III. Conclusions Proportion of Aboriginal and Torres Strait Islanders, unemployment and temperature appeared to be statistically associated with of suicide incidence across LGAs among all selected variables, especially in recent years. The results indicated that socio-demographic factors played more important roles than meteorological factors in the spatial pattern of suicide incidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an efficient noniterative method for distribution state estimation using conditional multivariate complex Gaussian distribution (CMCGD). In the proposed method, the mean and standard deviation (SD) of the state variables is obtained in one step considering load uncertainties, measurement errors, and load correlations. In this method, first the bus voltages, branch currents, and injection currents are represented by MCGD using direct load flow and a linear transformation. Then, the mean and SD of bus voltages, or other states, are calculated using CMCGD and estimation of variance method. The mean and SD of pseudo measurements, as well as spatial correlations between pseudo measurements, are modeled based on the historical data for different levels of load duration curve. The proposed method can handle load uncertainties without using time-consuming approaches such as Monte Carlo. Simulation results of two case studies, six-bus, and a realistic 747-bus distribution network show the effectiveness of the proposed method in terms of speed, accuracy, and quality against the conventional approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a highly reliable fault diagnosis scheme for incipient low-speed rolling element bearing failures. The scheme consists of fault feature calculation, discriminative fault feature analysis, and fault classification. The proposed approach first computes wavelet-based fault features, including the respective relative wavelet packet node energy and entropy, by applying a wavelet packet transform to an incoming acoustic emission signal. The most discriminative fault features are then filtered from the originally produced feature vector by using discriminative fault feature analysis based on a binary bat algorithm (BBA). Finally, the proposed approach employs one-against-all multiclass support vector machines to identify multiple low-speed rolling element bearing defects. This study compares the proposed BBA-based dimensionality reduction scheme with four other dimensionality reduction methodologies in terms of classification performance. Experimental results show that the proposed methodology is superior to other dimensionality reduction approaches, yielding an average classification accuracy of 94.9%, 95.8%, and 98.4% under bearing rotational speeds at 20 revolutions-per-minute (RPM), 80 RPM, and 140 RPM, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of modelling correlation has long been recognised in the field of portfolio management, with largedimensional multivariate problems increasingly becoming the focus of research. This paper provides a straightforward and commonsense approach toward investigating a number of models used to generate forecasts of the correlation matrix for large-dimensional problems.We find evidence in favour of assuming equicorrelation across various portfolio sizes, particularly during times of crisis. During periods of market calm, however, the suitability of the constant conditional correlation model cannot be discounted, especially for large portfolios. A portfolio allocation problem is used to compare forecasting methods. The global minimum variance portfolio and Model Confidence Set are used to compare methods, while portfolio weight stability and relative economic value are also considered.