926 resultados para cell-wall proteome


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sigma B (σB) is an alternative sigma factor that controls the transcriptional response to stress in Listeria monocytogenes and is also known to play a role in the virulence of this human pathogen. In the present study we investigated the impact of a sigB deletion on the proteome of L. monocytogenes grown in a chemically defined medium both in the presence and in the absence of osmotic stress (0.5 M NaCl). Two new phenotypes associated with the sigB deletion were identified using this medium. (i) Unexpectedly, the strain with the ΔsigB deletion was found to grow faster than the parent strain in the growth medium, but only when 0.5 M NaCl was present. This phenomenon was independent of the carbon source provided in the medium. (ii) The ΔsigB mutant was found to have unusual Gram staining properties compared to the parent, suggesting that σB contributes to the maintenance of an intact cell wall. A proteomic analysis was performed by two-dimensional gel electrophoresis, using cells growing in the exponential and stationary phases. Overall, 11 proteins were found to be differentially expressed in the wild type and the ΔsigB mutant; 10 of these proteins were expressed at lower levels in the mutant, and 1 was overexpressed in the mutant. All 11 proteins were identified by tandem mass spectrometry, and putative functions were assigned based on homology to proteins from other bacteria. Five proteins had putative functions related to carbon utilization (Lmo0539, Lmo0783, Lmo0913, Lmo1830, and Lmo2696), while three proteins were similar to proteins whose functions are unknown but that are known to be stress inducible (Lmo0796, Lmo2391, and Lmo2748). To gain further insight into the role of σB in L. monocytogenes, we deleted the genes encoding four of the proteins, lmo0796, lmo0913, lmo2391, and lmo2748. Phenotypic characterization of the mutants revealed that Lmo2748 plays a role in osmotolerance, while Lmo0796, Lmo0913, and Lmo2391 were all implicated in acid stress tolerance to various degrees. Invasion assays performed with Caco-2 cells indicated that none of the four genes was required for mammalian cell invasion. Microscopic analysis suggested that loss of Lmo2748 might contribute to the cell wall defect observed in the ΔsigB mutant. Overall, this study highlighted two new phenotypes associated with the loss of σB. It also demonstrated clear roles for σB in both osmotic and low-pH stress tolerance and identified specific components of the σB regulon that contribute to the responses observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pathogenic fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis, a pulmonary mycosis acquired by inhalation of fungal airborne propagules, which may disseminate to several organs and tissues, leading to a severe form of the disease. Adhesion to and invasion of host cells are essential steps involved in the infection and dissemination of pathogens. Furthermore, pathogens use their surface molecules to bind to host extracellular matrix components to establish infection. Here, we report the characterization of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of P. brasiliensis as an adhesin, which can be related to fungus adhesion and invasion. The P. brasiliensis GAPDH was overexpressed in Escherichia coli, and polyclonal antibody against this protein was obtained. By immunoelectron microscopy and Western blot analysis, GAPDH was detected in the cytoplasm and the cell wall of the yeast phase of P. brasiliensis. The recombinant GAPDH was found to bind to fibronectin, laminin, and type I collagen in ligand far-Western blot assays. of special note, the treatment of P. brasiliensis yeast cells with anti-GAPDH polyclonal antibody and the incubation of pneumocytes with the recombinant protein promoted inhibition of adherence and internalization of P. brasiliensis to those in vitro-cultured cells. These observations indicate that the cell wall-associated form of the GAPDH in P. brasiliensis could be involved in mediating binding of fungal cells to fibronectin, type I collagen, and laminin, thus contributing to the adhesion of the microorganism to host tissues and to the dissemination of infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glucoamylases have been used with alpha-amylases for the industrial conversion of starch into glucose. However, little is known about the properties of this glycosylated protein retained in the cell wall of Saccharomyces as well as its role in the saccharification and fermentation of amylaceous substrates, notably in high cell density processes. In most of the strains assayed, decreases in biomass formation were followed by increases in glucoamylase secretion (expressed as U/mg(biomass) in 1 ml of culture) when glucose was exchanged for starch as carbon source or the growth temperature was raised from 30 to 35 degrees C. Despite the losses in viability, significant increases in the activity of the wall fraction occurred when cultures of thermotolerant yeasts propagated at 30 degrees C or washed cells resuspended in buffer solution were heated to 60 degrees C for 60-80 min prior to amylolytic assays. Thus, intact cells of thermotolerant yeasts can be used as colloidal biocatalysts in starch degradation processes. (C) 2005 Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Papayas have a very short green life as a result of their rapid pulp softening as well as their susceptibility to physical injury and mold growth. The ripening-related changes take place very quickly, and there is a continued interest in the reduction of postharvest losses. Proteins have a central role in biological processes, and differential proteomics enables the discrimination of proteins affected during papaya ripening. A comparative analysis of the proteomes of climacteric and pre-climacteric papayas was performed using 2DE-DIGE. Third seven proteins corresponding to spots with significant differences in abundance during ripening were submitted to MS analysis, and 27 proteins were identified and classified into six main categories related to the metabolic changes occurring during ripening. Proteins from the cell wall (alpha-galactosidase and invertase), ethylene biosynthesis (methionine synthase), climacteric respiratory burst, stress response, synthesis of carotenoid precursors (hydroxymethylbutenyl 4-diphosphate synthase, GcpE), and chromoplast differentiation (fibrillin) were identified. There was some correspondence between the identified proteins and the data from previous transcript profiling of papaya fruit, but new, accumulated proteins were identified, which reinforces the importance of differential proteomics as a tool to investigate ripening and provides potentially useful information for maintaining fruit quality and minimizing postharvest losses. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wie alle Eukaryoten besitzen auch höhere Pflanzen ein mikrotubuläres Cytoskelett. Einige Funktionen dieses Cytoskeletts sind relativ stark konserviert, andere dagegen scheinen sehr pflanzenspezifisch zu sein. Dies betrifft insbesondere charakteristische mikrotubuläre Netzwerke, die bei der Neubildung und der Verstärkung der Zellwände wichtige Rollen übernehmen. Wie der Aufbau dieser Netzwerke kontrolliert wird, ist bisher relativ unklar. Typische Mikrotubuli organisierende Zentren (MTOC), insbesondere Centrosomen oder Spindelpolkörper, sind bei höheren Pflanzen nicht beobachtet worden. Von pilzlichen und tierischen Organismen weiß man, dass gamma-Tubulin (gTUB) mit seinen assoziierten Proteinen in den MTOC bei der Nukleation von Mikrotubuli eine Schlüsselfunktion hat. Dieses Mitglied der Tubulin-Superfamilie wird aber auch in Pflanzen gefunden, dessen genaue Funktion bisher unbekannt ist. Zu Beginn der Arbeit wurden mittels in silico Berechnungen Strukturmodelle des pflanzlichen gTUBs aus Nicotiana tabacum erarbeitet, da die Struktur, die zu einem Verständnis der pflanzlichen Wachstumsregulation beitragen könnte, bisher unbekannt ist. Auf Grundlage der bioinformatischen Daten konnte für weitere Studien eine notwendige gTUB-Deletionsmutante entwickelt werden. Für Röntgendiffraktionsstudien und gTUB-Interaktionspartneranalysen war die Verfügbarkeit verhältnismäßig großer Proteinmengen notwendig. Die Expression der gTUB-Volllängensequenz in gelöster und aktiver Form stellte einen immanent wichtigen Zwischenschritt dar. Das Escherichia coli T7/lacO-Expressionssystem lieferte, trotz vielversprechender Erfolge in der Vergangenheit, kein gelöstes rekombinantes gTUB. So wurden zwar verhältnismäßig hohe Expressionsraten erzielt, aber das rekombinante gTUB lag quantitativ als Inclusion bodies vor. Eine Variationen der Expressionsparameter sowie umfangreiche Versuche mittels verschiedenster Konstrukte sowie potentiell die Löslichkeit erhöhenden Tags gTUB in gelöster Form in E. coli zu exprimieren blieben erfolglos. Eine Denaturierung der Inclusion bodies und Rückfaltung wurde aufgrund der wohl bei der Tubulinfaltung notwendigen komplexeren Chaperone sowie thermodynamischer Überlegungen ausgeschlossen. Die höher evolvierte Chaperonausstattung war ein Hauptgrund für die Verwendung der eukaryotischen Hefe-Expressionssysteme K. lactis und des S. cerevisiae-Stammes FGY217 zur gTUB-Expression. So konnten nach der Selektion nur transgene Hefe-Zellen dokumentiert werden, die die gTUB-Expressionskassette nachweislich an der vorgesehenen Zielposition in ihrem Genom integrierten, aber keine dokumentierbare Expression zeigten. Die wahrscheinlichste Begründung hierfür ist, dass ein erhöhter intrazellulärer gTUB-Titer mit dem Zellwachstum und der Zellteilung dieser eukaryotischen Organismen interferierte und durch Rückkopplungen die rekombinante gTUB-CDS aus N. tabacum ausgeschaltet wurde. Der Versuch einer transienten gTUB-Überexpression in differenzierten Blattgeweben höherer Pflanzen war eine logische Konsequenz aus den vorherigen Ergebnissen und lieferte, wenn auch nicht die für eine Proteinkristallisation notwendigen Mengen, gelöstes gTUB. Bestrebungen einer stabilen Transfektion von A. thaliana oder BY-2-Zellkulturen mit einer gTUB-CDS lieferten keine transgenen Organismen, was starke Interferenzen der rekombinanten gTUB-CDS in den Zellen vermuten lies. Transfektionsversuche mit nur GFP tragenden Konstrukten ergaben hingegen eine hohe Anzahl an transgenen Organismen, die auch verhältnismäßig starke Expressionsraten zeigten. Die erzielten Proteinmengen bei der transienten gTUB-Überexpression in N. benthamiana Blattgeweben, in Co-Expression mit dem Posttransriptional Gene Silencing-Suppressorprotein p19, waren für einen Pull-Down sowie eine massenspektroskopische Analyse der Interaktionspartner ausreichend und ergaben Befunde. Eine abschließende Auswertung des erarbeiteten massenspektroskopischen Datensatzes wird jedoch erst dann möglich sein, wenn das Tabak-Proteom vollständig sequenziert ist. Die Erweiterung der bestehenden pflanzlichen Vergleichsdatenbanken um das bisher bekannte Tabak-Proteom vervielfachte die Anzahl der in dieser Studie identifizierten gTUB-Interaktionspartner. Interaktionen mit dem TCP1-Chaperon untermauern die Hypothese der zur Faltung pflanzlichen gTUBs notwendigen Chaperone. Beobachtete gTUB-Degradationsmuster in Verbindung mit Interaktionen des 26S-Proteasoms deuten auf eine Gegenregulationen bei erhöhtem gTUB-Titer auf Proteinebene hin. Da Blattgewebe selbst nur noch über eine sehr geringe und inhomogene Teilungsaktivität verfügen ist diese Regulation hoch spannend. Auch konnte durch Co-Expression des PTGS-Suppressorproteins p19 gezeigt werden, dass bei der gTUB-Expression eine Regulation auf RNA-Ebene erfolgt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Among the Agrobacterium T-DNA genes, rolB, rolC, orf13, orf8, lso, 6b and several other genes encode weakly homologous proteins with remarkable effects on plant growth. The 6b oncogene induces tumors and enations. In order to study its properties we have used transgenic tobacco plants that carry a dexamethasone-inducible 6b gene, dex-T-6b. Upon induction, dex-T-6b plants develop a large array of morphological modifications, some of which involve abnormal cell expansion. In the present investigation, dex-T-6b-induced expansion was studied in intact leaves and an in vitro leaf disc system. Although T-6b and indole-3-acetic acid (IAA) both induced expansion and were non-additive, T-6b expression did not increase IAA levels, nor did it induce an IAA-responsive gene. Fusicoccin (FC) is known to stimulate expansion by increasing cell wall plasticity. T-6b- and FC-induced expansion were additive at saturating FC concentrations, indicating that T-6b does not act by a similar mechanism to FC. T-6b expression led to higher leaf osmolality values, in contrast to FC, suggesting that the T-6b gene induces expansion by increasing osmolyte concentrations. Metabolite profiling showed that glucose and fructose played a major role in this increase. We infer that T-6b disrupts the osmoregulatory controls that govern cell expansion during development and wound healing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The softening and degradation of the cell wall (CW), often mannan enriched, is involved in several processes during development of higher plants, such as meristematic growth, fruit ripening, programmed cell death, and endosperm rupture upon germination. Mannans are also the predominant hemicellulosic CW polymers in many genera of green algae. The endosperm CWs of dry seeds often contain mannan polymers, sometimes in the form of galactomannans (Gal-mannans). The endo-beta-mannanases (MANs) that catalyse the random hydrolysis of the beta-linkage in the mannan backbone are one of the main hydrolytic enzymes involved in the loosening and remodelling of CWs. In germinating seeds, the softening of the endosperm seed CWs facilitates the emergence of the elongating radicle. Hydrolysis and mobilization of endosperm Gal-mannans by MANs also provides a source of nutrients for early seedling growth, since Gal-mannan, besides its structural role, serves as a storage polysaccharide. Therefore, the role of mannans and of their hydrolytic enzymes is decisive in the life cycle of seeds. This review updates and discusses the significance of mannans and MANs in seeds and explores the increasing biotechnological potential of MAN enzymes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Root-knot nematodes (RKNs) induce giant cells (GCs) from root vascular cells inside the galls. Accompanying molecular changes as a function of infection time and across different species, and their functional impact, are still poorly understood. Thus, the transcriptomes of tomato galls and laser capture microdissected (LCM) GCs over the course of parasitism were compared with those of Arabidopsis, and functional analysis of a repressed gene was performed. Microarray hybridization with RNA from galls and LCM GCs, infection-reproduction tests and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) transcriptional profiles in susceptible and resistant (Mi-1) lines were performed in tomato. Tomato GC-induced genes include some possibly contributing to the epigenetic control of GC identity. GC-repressed genes are conserved between tomato and Arabidopsis, notably those involved in lignin deposition. However, genes related to the regulation of gene expression diverge, suggesting that diverse transcriptional regulators mediate common responses leading to GC formation in different plant species. TPX1, a cell wall peroxidase specifically involved in lignification, was strongly repressed in GCs/galls, but induced in a nearly isogenic Mi-1 resistant line on nematode infection. TPX1 overexpression in susceptible plants hindered nematode reproduction and GC expansion. Time-course and cross-species comparisons of gall and GC transcriptomes provide novel insights pointing to the relevance of gene repression during RKN establishment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diploid yeast develop pseudohyphae in response to nitrogen starvation, while haploid yeast produce invasive filaments which penetrate the agar in rich medium. We have identified a gene, FLO11, that encodes a cell wall protein which is critically required for both invasion and pseudohyphae formation in response to nitrogen starvation. FLO11 encodes a cell surface flocculin with a structure similar to the class of yeast serine/threonine-rich GPI-anchored cell wall proteins. Cells of the Saccharomyces cerevisiae strain Σ1278b with deletions of FLO11 do not form pseudohyphae as diploids nor invade agar as haploids. In rich media, FLO11 is regulated by mating type; it is expressed in haploid cells but not in diploids. Upon transfer to nitrogen starvation media, however, FLO11 transcripts accumulate in diploid cells, but not in haploids. Overexpression of FLO11 in diploid cells, which are otherwise not invasive, enables them to invade agar. Thus, the mating type repression of FLO11 in diploids grown in rich media suffices to explain the inability of these cells to invade. The promoter of FLO11 contains a consensus binding sequence for Ste12p and Tec1p, proteins known to cooperatively activate transcription of Ty1 elements and the TEC1 gene during development of pseudohyphae. Yeast with a deletion of STE12 does not express FLO11 transcripts, indicating that STE12 is required for FLO11 expression. These ste12-deletion strains also do not invade agar. However, the ability to invade can be restored by overexpressing FLO11. Activation of FLO11 may thus be the primary means by which Ste12p and Tec1p cause invasive growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell fusion in yeast is the process by which two haploid cells fuse to form a diploid zygote. To dissect the pathway of cell fusion, we phenotypically and genetically characterized four cell fusion mutants, fus6/spa2, fus7/rvs161, fus1, and fus2. First, we examined the complete array of single and double mutants. In all cases but one, double mutants exhibited stronger cell fusion defects than single mutants. The exception was rvs161Δ fus2Δ, suggesting that Rvs161p and Fus2p act in concert. Dosage suppression analysis showed that Fus1p and Fus2p act downstream or parallel to Rvs161p and Spa2p. Second, electron microscopic analysis was used to define the mutant defects in cell fusion. In wild-type prezygotes vesicles were aligned and clustered across the cell fusion zone. The vesicles were associated with regions of cell wall thinning. Analysis of Fus− zygotes indicated that Fus1p was required for the normal localization of the vesicles to the zone of cell fusion, and Spa2p facilitated their clustering. In contrast, Fus2p and Rvs161p appeared to act after vesicle positioning. These findings lead us to propose that cell fusion is mediated in part by the localized release of vesicles containing components essential for cell fusion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fission yeast pob1 gene encodes a protein of 871 amino acids carrying an SH3 domain, a SAM domain, and a PH domain. Gene disruption and construction of a temperature-sensitive pob1 mutant indicated that pob1 is essential for cell growth. Loss of its function leads to quick cessation of cellular elongation. Pob1p is homologous to two functionally redundant Saccharomyces cerevisiae proteins, Boi1p and Boi2p, which are necessary for cell growth and relevant to bud formation. Overexpression of pob1 inhibits cell growth, causing the host cells to become round and swollen. In growing cells, Pob1p locates at cell tips during interphase and translocates near the division plane at cytokinesis. Thus, this protein exhibits intracellular dynamics similar to F-actin patches. However, Pob1p constitutes a layer, rather than patches, at growing cell tips. It generates two split discs flanking the septum at cytokinesis. The pob1-defective cells no longer elongate but swell gradually at the middle, eventually assuming a lemon-like morphology. Analysis using the pob1-ts allele revealed that Pob1p is also essential for cell separation. We speculate that Pob1p is located on growing plasma membrane, possibly through the function of actin patches, and may recruit proteins required for the synthesis of cell wall.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyzed the pathogenesis-related generation of H2O2 using the microscopic detection of 3,3-diaminobenzidine polymerization in near-isogenic barley (Hordeum vulgare L.) lines carrying different powdery mildew (Blumeria graminis f.sp. hordei) resistance genes, and in a line expressing chemically activated resistance after treatment with 2,6-dichloroisonicotinic acid (DCINA). Hypersensitive cell death in Mla12 and Mlg genotypes or after chemical activation by DCINA was associated with H2O2 accumulation throughout attacked cells. Formation of cell wall appositions (papillae) mediated in Mlg and mlo5 genotypes and in DCINA-activated plants was paralleled by H2O2 accumulation in effective papillae and in cytosolic vesicles of up to 2 μm in diameter near the papillae. H2O2 was not detected in ineffective papillae of cells that had been successfully penetrated by the fungus. These findings support the hypothesis that H2O2 may play a substantial role in plant defense against the powdery mildew fungus. We did not detect any accumulation of salicylic acid in primary leaves after inoculation of the different barley genotypes, indicating that these defense responses neither relied on nor provoked salicylic acid accumulation in barley.