911 resultados para boreal forest


Relevância:

30.00% 30.00%

Publicador:

Resumo:

"We used PCR-DGGE fingerprinting and direct sequencing to analyse the response of fungal and actinobacterial communities to changing hydrological conditions at 3 different sites in a boreal peatland complex in Finland. The experimental design involved a short-term (3 years; STD) and a long-term (43 years; LTD) water-level drawdown. Correspondence analyses of DGGE bands revealed differences in the communities between natural sites representing the nutrient-rich mesotrophic fen, the nutrient-poorer oligotrophic fen, and the nutrient-poor ombrotrophic bog. Still, most fungi and actinobacteria found in the pristine peatland seemed robust to the environmental variables. Both fungal and actinobacterial diversity was higher in the fens than in the bog. Fungal diversity increased significantly after STD whereas actinobacterial diversity did not respond to hydrology. Both fungal and actinobacterial communities became more similar between peatland types after LTD, which was not apparent after STD. Most sequences clustered equally between the two main fungal phyla Ascomycota and Basidiomycota. Sequencing revealed that basidiomycetes may respond more (either positively or negatively) to hydrological changes than ascomycetes. Overall, our results suggest that fungal responses to water-level drawdown depend on peatland type. Actinobacteria seem to be less sensitive to hydrological changes, although the response of some may similarly depend on peatland type. (C) 2009 Elsevier Ltd. All rights reserved."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on carbon uptake in boreal forests has mainly focused on mature trees, even though ground vegetation species are effective assimilators and can substantially contribute to the CO2 uptake of forests. Here, I examine the photosynthesis of the most common species of ground vegetation in a series of differently aged Scots pine stands, and at two clear-cut sites with substantial differences in fertility. In general, the biomass of evergreen species was highest at poor sites and below canopies, whereas grasses and herbs predominated at fertile sites and open areas. Unlike mosses, the measured vascular species showed clear annual cycles in their photosynthetic activity, which increased earlier and decreased later in evergreen vascular species than in deciduous species. However, intraspecific variation and self-shading create differences in the overall level of photosynthesis. Light, temperature history, soil moisture and recent possible frosts could explain the changes in photosynthesis of low shrubs and partially also some changes in deciduous species. Light and the occurrence of rain events explained most of the variation in the photosynthesis of mosses. The photosynthetic production of ground vegetation was first upscaled, using species-specific and mass-based photosynthetic activities and average biomass of the site, and then integrated over the growing season, using changes in environmental factors. Leaf mass-based photosynthesis was highest in deciduous species, resulting in notably higher photosynthetic production at fertile sites than at poor clear-cut sites. The photosynthetic production decreased with stand age, because flora changed towards evergreen species, and light levels diminished below the canopy. In addition, the leaf mass-based photosynthetic activity of some low shrubs declined with the age of the surrounding trees. Different measuring methods led to different momentary rate of photosynthesis. Therefore, the choice of measuring method needs special attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test the reliability of the radiocarbon method for determining root age, we analyzed fine roots (originating from the years 1985 to 1993) from ingrowth cores with known maximum root age (1 to 6 years old). For this purpose, three Scots pine (Pinus sylvestris L.) stands were selected from boreal forests in Finland. We analyzed root 14C age by the radiocarbon method and compared it with the above-mentioned known maximum fine root age. In general, ages determined by the two methods (root 14C age and ingrowth core root maximum age) were in agreement with each other for roots of small diameter (<0.5mm). By contrast, in most of the samples of fine roots of larger diameter (1.5-2mm), the 14C age of root samples of 1987-89 exceeded the ingrowth core root maximum age by 1-10 years. This shows that these roots had received a large amount of older stored carbon from unknown sources in addition to atmospheric CO2 directly from photosynthesis. We conclude that the 14C signature of fine roots, especially those of larger diameter, may not always be indicative of root age, and that further studies are needed concerning the extent of possible root uptake of older carbon and its residence time in roots. Keywords: fine root age, Pinus sylvestris, radiocarbon, root carbon, ingrowth cores, tree ring

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 PgC year-1 with significant interannual variability during 1997-2001 (2.8 Pg Cyear-1 in 1998 and 1.6 PgC year-1 in 2001). Globally, emissions during 2002-2007 were rela-tively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg Cyear-1) and 2009 (1.5 PgC year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 PgC year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series. © 2010 Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 Published by Elsevier B.V.Tree growth resources and the efficiency of resource-use for biomass production determine the productivity of forest ecosystems. In nutrient-limited forests, nitrogen (N)-fertilization increases foliage [N], which may increase photosynthetic rates, leaf area index (L), and thus light interception (IC). The product of such changes is a higher gross primary production and higher net primary production (NPP). However, fertilization may also alter carbohydrate partitioning from below- to aboveground, increasing aboveground NPP (ANPP). We analyzed effects of long-term N-fertilization on NPP, and that of long-term carbon storing organs (NPPS) in a Pinus sylvestris forest on sandy soil, a wide-ranging forest type in the boreal region. We based our analyses on a combination of destructive harvesting, consecutive mensuration, and optical measurements of canopy openness. After eight-year fertilization with a total of 70gNm-2, ANPP was 27±7% higher in the fertilized (F) relative to the reference (R) stand, but although L increased relative to its pre-fertilization values, IC was not greater than in R. On the seventh year after the treatment initiation, the increase of ANPP was matched by the decrease of belowground NPP (78 vs. 92gCm-2yr-1; ~17% of NPP) and, given the similarity of IC, suggests that the main effect of N-fertilization was changed carbon partitioning rather than increased canopy photosynthesis. Annual NPPS increased linearly with growing season temperature (T) in both treatments, with an upward shift of 70.2gCm-2yr-1 by fertilization, which also caused greater amount of unexplained variation (r2=0.53 in R, 0.21 in F). Residuals of the NPPS-T relationship of F were related to growing season precipitation (P, r2=0.48), indicating that T constrains productivity at this site regardless of fertility, while P is important in determining productivity where N-limitation is alleviated. We estimated that, in a growing season average T (11.5±1.0°C; 33-year-mean), NPPS response to N-fertilization will be nullified with P 31mm less than the mean (325±85mm), and would double with P 109mm greater than the mean. These results suggest that inter-annual variation in climate, particularly in P, may help explaining the reported large variability in growth responses to fertilization of pine stands on sandy soils. Furthermore, forest management of long-rotation systems, such as those of boreal and northern temperate forests, must consider the efficiency of fertilization in terms of wood production in the context of changes in climate predicted for the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xanthoria parietina, common foliose lichen, growing in its natural habitat, was analysed for the concentration of five heavy metals (Fe, Cr, Zn, Pb and Cu) from different forest sites of North East of Morocco (Kenitra, Sidi Boughaba, Mkhinza, Ceinture Verte near Temara city, Skhirate, Bouznika and Mohammedia). The quantification was carried out by inductively coupled plasma - atomic emission spectrometry (ICP-AES). Results were highly significant p<0,001. The concentration of metals is correlated with the vehicular activity and urbanization. The total metal concentration is highest at the Kenitra area, followed by Ceinture Verte site near Temara city, which experience heavy traffic throughout the year. Scanning electron microscopy (SEM) of particulate matter on lichen of Xanthoria parietina was assessed as a complementary technique to wet chemical analysis for source apportionment of airborne contaminant. Analysis revealed high level of Cu, Cr, Zn and Pb in samples near roads.  

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intercontinental Transport of Ozone and Precursors (ITOP) (part of International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)) was an intense research effort to measure long-range transport of pollution across the North Atlantic and its impact on O3 production. During the aircraft campaign plumes were encountered containing large concentrations of CO plus other tracers and aerosols from forest fires in Alaska and Canada. A chemical transport model, p-TOMCAT, and new biomass burning emissions inventories are used to study the emissions long-range transport and their impact on the troposphere O3 budget. The fire plume structure is modeled well over long distances until it encounters convection over Europe. The CO values within the simulated plumes closely match aircraft measurements near North America and over the Atlantic and have good agreement with MOPITT CO data. O3 and NOx values were initially too great in the model plumes. However, by including additional vertical mixing of O3 above the fires, and using a lower NO2/CO emission ratio (0.008) for boreal fires, O3 concentrations are reduced closer to aircraft measurements, with NO2 closer to SCIAMACHY data. Too little PAN is produced within the simulated plumes, and our VOC scheme's simplicity may be another reason for O3 and NOx model-data discrepancies. In the p-TOMCAT simulations the fire emissions lead to increased tropospheric O3 over North America, the north Atlantic and western Europe from photochemical production and transport. The increased O3 over the Northern Hemisphere in the simulations reaches a peak in July 2004 in the range 2.0 to 6.2 Tg over a baseline of about 150 Tg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new snow-soil-vegetation-atmosphere transfer (Snow-SVAT) scheme, which simulates the accumulation and ablation of the snow cover beneath a forest canopy, is presented. The model was formulated by coupling a canopy optical and thermal radiation model to a physically-based multi-layer snow model. This canopy radiation model is physically-based yet requires few parameters, so can be used when extensive in-situ field measurements are not available. Other forest effects such as the reduction of wind speed, interception of snow on the canopy and the deposition of litter were incorporated within this combined model, SNOWCAN, which was tested with data taken as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) international collaborative experiment. Snow depths beneath four different canopy types and at an open site were simulated. Agreement between observed and simulated snow depths was generally good, with correlation coefficients ranging between r^2=0.94 and r^2=0.98 for all sites where automatic measurements were available. However, the simulated date of total snowpack ablation generally occurred later than the observed date. A comparison between simulated solar radiation and limited measurements of sub-canopy radiation at one site indicates that the model simulates the sub-canopy downwelling solar radiation early in the season to within measurement uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest fires play a key role in the global carbon cycle and thus, can affect regional and global climate. Although fires in extended areas of Russian boreal forests have a considerable influence on atmospheric greenhouse gas and soot concentrations, estimates of their impact on climate are hampered by a lack of data on the history of forest fires. Especially regions with strong continental climate are of high importance due to an intensified development of wildfires. In this study we reconstruct the fire history of Southern Siberia during the past 750 years using ice-core based nitrate, potassium, and charcoal concentration records from Belukha glacier in the continental Siberian Altai. A period of exceptionally high forest-fire activity was observed between AD 1600 and 1680, following an extremely dry period AD 1540-1600. Ice-core pollen data suggest distinct forest diebacks and the expansion of steppe in response to dry climatic conditions. Coherence with a paleoenvironmental record from the 200 km distant Siberian lake Teletskoye shows that the vegetational shift AD 1540-1680, the increase in fire activity AD 1600-1680, and the subsequent recovery of forests AD 1700 were of regional significance. Dead biomass accumulation in response to drought and high temperatures around AD 1600 probably triggered maximum forest-fire activity AD 1600-1680. The extreme dry period in the 16th century was also observed at other sites in Central Asia and is possibly associated with a persistent positive mode of the Pacific Decadal Oscillation (PDO). No significant increase in biomass burning occurred in the Altai region during the last 300 years, despite strongly increasing temperatures and human activities. Our results imply that precipitation changes controlled fire-regime and vegetation shifts in the Altai region during the past 750 years. We conclude that high sensitivity of ecosystems to occasional decadal-scale drought events may trigger unprecedented environmental reorganizations under global-warming conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Response of plant biodiversity to increased availability of nitrogen (N) has been investigated in temperate and boreal forests, which are typically N-limited, but little is known in tropical forests. We examined the effects of artificial N additions on plant diversity (species richness, density and cover) of the understory layer in an N saturated old-growth tropical forest in southern China to test the following hypothesis: N additions decrease plant diversity in N saturated tropical forests primarily from N-mediated changes in soil properties. Experimental additions of N were administered at the following levels from July 2003 to July 2008: no addition (Control); 50 kg N ha−1 yr−1 (Low-N); 100 kg N ha−1 yr−1 (Medium-N), and 150 kg N ha−1 yr−1 (High-N). Results showed that no understory species exhibited positive growth response to any level of N addition during the study period. Although low-to-medium levels of N addition (≤100 kg N ha−1 yr−1) generally did not alter plant diversity through time, high levels of N addition significantly reduced species diversity. This decrease was most closely related to declines within tree seedling and fern functional groups, as well as to significant increases in soil acidity and Al mobility, and decreases in Ca availability and fine-root biomass. This mechanism for loss of biodiversity provides sharp contrast to competition-based mechanisms suggested in studies of understory communities in other forests. Our results suggest that high-N additions can decrease plant diversity in tropical forests, but that this response may vary with rate of N addition.