971 resultados para analyzing
Resumo:
In medical follow-up studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as the outcomes to identify the progression of a disease. In cancer studies interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme where the first failure event (cancer onset) is identified within a calendar time interval, the time of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second event (death) is observed sub ject to right censoring. To analyze this type of bivariate failure time data, it is important to recognize the presence of bias arising due to interval sampling. In this paper, nonparametric and semiparametric methods are developed to analyze the bivariate survival data with interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate the proposed estimating approaches perform well with practical sample sizes in different simulated models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of the methods and theory.
Resumo:
The penetration, translocation, and distribution of ultrafine and nanoparticles in tissues and cells are challenging issues in aerosol research. This article describes a set of novel quantitative microscopic methods for evaluating particle distributions within sectional images of tissues and cells by addressing the following questions: (1) is the observed distribution of particles between spatial compartments random? (2) Which compartments are preferentially targeted by particles? and (3) Does the observed particle distribution shift between different experimental groups? Each of these questions can be addressed by testing an appropriate null hypothesis. The methods all require observed particle distributions to be estimated by counting the number of particles associated with each defined compartment. For studying preferential labeling of compartments, the size of each of the compartments must also be estimated by counting the number of points of a randomly superimposed test grid that hit the different compartments. The latter provides information about the particle distribution that would be expected if the particles were randomly distributed, that is, the expected number of particles. From these data, we can calculate a relative deposition index (RDI) by dividing the observed number of particles by the expected number of particles. The RDI indicates whether the observed number of particles corresponds to that predicted solely by compartment size (for which RDI = 1). Within one group, the observed and expected particle distributions are compared by chi-squared analysis. The total chi-squared value indicates whether an observed distribution is random. If not, the partial chi-squared values help to identify those compartments that are preferential targets of the particles (RDI > 1). Particle distributions between different groups can be compared in a similar way by contingency table analysis. We first describe the preconditions and the way to implement these methods, then provide three worked examples, and finally discuss the advantages, pitfalls, and limitations of this method.
Resumo:
PURPOSE: The clinical role of CAD systems to detect breast cancer, which have not been on cancer containing mammograms not detected by the radiologist was proven retrospectively. METHODS: All patients from 1992 to 2005 with a histologically verified malignant breast lesion and a mammogram at our department, were analyzed in retrospect focussing on the time of detection of the malignant lesion. All prior mammograms were analyzed by CAD (CADx, USA). The resulting CAD printout was matched with the cancer containing images yielding to the radiological diagnosis of breast cancer. CAD performance, sensitivity as well as the association of CAD and radiological features were analyzed. RESULTS: 278 mammograms fulfilled the inclusion criteria. 111 cases showed a retrospectively visible lesion (71 masses, 23 single microcalcification clusters, 16 masses with microcalcifications, in one case two microcalcification clusters). 54/87 masses and 34/41 microcalcifications were detected by CAD. Detection rates varied from 9/20 (ACR 1) to 5/7 (ACR 4) (45% vs. 71%). The detection of microcalcifications was not influenced by breast tissue density. CONCLUSION: CAD might be useful in an earlier detection of subtle breast cancer cases, which might remain otherwise undetected.
Resumo:
Water-saturated debris flows are among some of the most destructive mass movements. Their complex nature presents a challenge for quantitative description and modeling. In order to improve understanding of the dynamics of these flows, it is important to seek a simplified dynamic system underlying their behavior. Models currently in use to describe the motion of debris flows employ depth-averaged equations of motion, typically assuming negligible effects from vertical acceleration. However, in many cases debris flows experience significant vertical acceleration as they move across irregular surfaces, and it has been proposed that friction associated with vertical forces and liquefaction merit inclusion in any comprehensive mechanical model. The intent of this work is to determine the effect of vertical acceleration through a series of laboratory experiments designed to simulate debris flows, testing a recent model for debris flows experimentally. In the experiments, a mass of water-saturated sediment is released suddenly from a holding container, and parameters including rate of collapse, pore-fluid pressure, and bed load are monitored. Experiments are simplified to axial geometry so that variables act solely in the vertical dimension. Steady state equations to infer motion of the moving sediment mass are not sufficient to model accurately the independent solid and fluid constituents in these experiments. The model developed in this work more accurately predicts the bed-normal stress of a saturated sediment mass in motion and illustrates the importance of acceleration and deceleration.
Resumo:
Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.
Resumo:
As continued global funding and coordination are allocated toward the improvement of access to safe sources of drinking water, alternative solutions may be necessary to expand implementation to remote communities. This report evaluates two technologies used in a small water distribution system in a mountainous region of Panama; solar powered pumping and flow-reducing discs. The two parts of the system function independently, but were both chosen for their ability to mitigate unique issues in the community. The design program NeatWork and flow-reducing discs were evaluated because they are tools taught to Peace Corps Volunteers in Panama. Even when ample water is available, mountainous terrains affect the pressure available throughout a water distribution system. Since the static head in the system only varies with the height of water in the tank, frictional losses from pipes and fittings must be exploited to balance out the inequalities caused by the uneven terrain. Reducing the maximum allowable flow to connections through the installation of flow-reducing discs can help to retain enough residual pressure in the main distribution lines to provide reliable service to all connections. NeatWork was calibrated to measured flow rates by changing the orifice coefficient (θ), resulting in a value of 0.68, which is 10-15% higher than typical values for manufactured flow-reducing discs. NeatWork was used to model various system configurations to determine if a single-sized flow-reducing disc could provide equitable flow rates throughout an entire system. There is a strong correlation between the optimum single-sized flow- reducing disc and the average elevation change throughout a water distribution system; the larger the elevation change across the system, the smaller the recommended uniform orifice size. Renewable energy can jump the infrastructure gap and provide basic services at a fraction of the cost and time required to install transmission lines. Methods for the assessment of solar powered pumping systems as a means for rural water supply are presented and assessed. It was determined that manufacturer provided product specifications can be used to appropriately design a solar pumping system, but care must be taken to ensure that sufficient water can be provided to the system despite variations in solar intensity.
Resumo:
This programmatic paper investigates the possibilities, chances, and risks of analyzing personal and professional online communication from the point of view of interactional sociolinguistics combined with modern social network analysis (SNA). Thus, it has two complementing goals: One is the exploration of adequate, innovative concepts and methods for analyzing online communication, the other is to use online communication and its ontological and functional specificities to enrich the conceptual and methodological background of SNA. The paper is organized in two parts. It begins with an introduction to recent developments in sociolinguistic social network analysis. Here, three interesting new concepts and tools are discussed: latent versus emergent networks (Watts 1991), coalitions (Fitzmaurice 2000a, Fitzmaurice 2000b), and communities of practice (Wenger 1998
Resumo:
A great share of literature on social exclusion has been based mainly on the analysis of official survey data. Whereas these efforts have provided insights into the characteristics and conditions of those people living at the margins of mainstream social relations, they have however failed to encompass those who live beyond these very margins. Meanwhile, research on these hidden subpopulations, such as homeless and other vulnerable groups, remains generally less abundant and is significantly detached from the theoretical core of the debate on social exclusion. The concern about these shortcomings lies at the heart of our research. We seek to bring some light to the area by using data made available by an organization that provides services to people experiencing homelessness in Barcelona (Spain). The data sample contains clients in early stages of exclusion and others in chronic situations. Thus, we attempt to identify some of the variables that operate in preventing the "chronification" of those individuals in situation of social exclusion. Our findings suggest that certain variables such as educational level, income and housing type, which are considered to be central predictors in the analysis of poverty, behave differently when analyzing differences between stages of social exclusion. Although these results cannot be extrapolated to the whole Spanish or European reality, they could provide useful insight for future investigations on this topic.
Resumo:
Mixed Reality (MR) aims to link virtual entities with the real world and has many applications such as military and medical domains [JBL+00, NFB07]. In many MR systems and more precisely in augmented scenes, one needs the application to render the virtual part accurately at the right time. To achieve this, such systems acquire data related to the real world from a set of sensors before rendering virtual entities. A suitable system architecture should minimize the delays to keep the overall system delay (also called end-to-end latency) within the requirements for real-time performance. In this context, we propose a compositional modeling framework for MR software architectures in order to specify, simulate and validate formally the time constraints of such systems. Our approach is first based on a functional decomposition of such systems into generic components. The obtained elements as well as their typical interactions give rise to generic representations in terms of timed automata. A whole system is then obtained as a composition of such defined components. To write specifications, a textual language named MIRELA (MIxed REality LAnguage) is proposed along with the corresponding compilation tools. The generated output contains timed automata in UPPAAL format for simulation and verification of time constraints. These automata may also be used to generate source code skeletons for an implementation on a MR platform. The approach is illustrated first on a small example. A realistic case study is also developed. It is modeled by several timed automata synchronizing through channels and including a large number of time constraints. Both systems have been simulated in UPPAAL and checked against the required behavioral properties.