994 resultados para air particle abrasion
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Sampling the total air concentration of particulate matter (PM) only provides a basic estimate of exposure that normally not allows correlating with the observed health effects. Therefore is of great importance to recognize the particles size distribution and, particularly, the exposure to fine particles (≤ 2.5 μm). This particles dimension corresponds to the respirable fraction, the one that can implicate local and systemic effects due to particle deposition and clearance from the lungs and transport within the organism. This study intended to describe occupational exposure to PM2.5 in three units related with swine production and consumption, namely: feed production, swine production and swine slaughterhouse. A size-selective particle measuring in five to six workplaces of each unit was performed. Measurements of PM were done using a portable direct-reading hand-held equipment (Lighthouse, model 3016 IAQ). Data showed slaughterhouse unit with higher values, with values ranging from 0.030 to 0.142 mg/m3 (0.073 + 0.043), being the cutting room the workplace with higher values. In feed production unit, values were between 0.026 and 0.033 mg/m3 (0.028 + 0.003) with the warehouse of pharmacy products as the workplace with higher values. Finally, in swine unit values ranged from 0.006 to 0.048 mg/m3 (0.023 + 0.017) with the batteries area presenting the higher values. PM can be rich in fungi and bacteria and their metabolites, such as endotoxins and mycotoxins. Previous publications already showed high contamination in these occupational settings and particles can have an important role in exposure since can easily act as carrier of these agents. Data acquired allow not only a better prediction of particle penetration into respiratory regions of the respiratory tract, but also a better estimation of PM health effects. Moreover, data permit to identify the workplaces where investment should be made to prevent and reduce exposure.
Resumo:
Sampling the total air concentration of particulate matter (PM) only provides a basic estimate of exposure that normally not allows correlating with the observed health effects. Therefore is of extreme importance to know the particles size distribution and, in more detail, the exposure to fine particles (≤ 2.5 µm). This particles dimension corresponds to the respirable fraction. This particle fraction can result, besides local effects, in systemic effects due to particle deposition and clearance from the lungs and transport within the organism. This study intended to describe occupational exposure to PM2.5 in three different units located near Lisbon and related with occupational exposure to organic dust, namely: swine and poultry feed production and waste management.
Resumo:
The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that occur naturally in complex mixtures. Many of the adverse health effects of PAHs including cancer are linked to the activation of intracellular stress response signaling. This study has investigated intracellular MAPK signaling in response to PAHs in extracts from urban air collected in Stockholm, Sweden and Limeira, Brazil, in comparison to BP in HepG2 cells. Nanomolar concentrations of PAHs in the extracts induced activation of MEK4 signaling with down-stream increased gene expression of several important stress response mediators. Involvement of the MEK4/JNK pathway was confirmed using siRNA and an inhibitor of JNK signaling resulting in significantly reduced MAPK signaling transactivated by the AP-1 transcription factors ATF2 and c-Jun. ATF2 was also identified as a sensitive stress responsive protein with activation observed at extract concentrations equivalent to 0.1 nM BP. We show that exposure to low levels of environmental PAH mixtures more strongly activates these signaling pathways compared to BP alone suggesting effects due to interactions. Taken together, this is the first study showing the involvement of MEK4/JNK/AP-1 pathway in regulating the intracellular stress response after exposure to nanomolar levels of PAHs in environmental mixtures.
Resumo:
Current data indicate that the size of high-density lipoprotein (HDL) may be considered an important marker for cardiovascular disease risk. We established reference values of mean HDL size and volume in an asymptomatic representative Brazilian population sample (n=590) and their associations with metabolic parameters by gender. Size and volume were determined in HDL isolated from plasma by polyethyleneglycol precipitation of apoB-containing lipoproteins and measured using the dynamic light scattering (DLS) technique. Although the gender and age distributions agreed with other studies, the mean HDL size reference value was slightly lower than in some other populations. Both HDL size and volume were influenced by gender and varied according to age. HDL size was associated with age and HDL-C (total population); non- white ethnicity and CETP inversely (females); HDL-C and PLTP mass (males). On the other hand, HDL volume was determined only by HDL-C (total population and in both genders) and by PLTP mass (males). The reference values for mean HDL size and volume using the DLS technique were established in an asymptomatic and representative Brazilian population sample, as well as their related metabolic factors. HDL-C was a major determinant of HDL size and volume, which were differently modulated in females and in males.
Resumo:
Evolving interfaces were initially focused on solutions to scientific problems in Fluid Dynamics. With the advent of the more robust modeling provided by Level Set method, their original boundaries of applicability were extended. Specifically to the Geometric Modeling area, works published until then, relating Level Set to tridimensional surface reconstruction, centered themselves on reconstruction from a data cloud dispersed in space; the approach based on parallel planar slices transversal to the object to be reconstructed is still incipient. Based on this fact, the present work proposes to analyse the feasibility of Level Set to tridimensional reconstruction, offering a methodology that simultaneously integrates the proved efficient ideas already published about such approximation and the proposals to process the inherent limitations of the method not satisfactorily treated yet, in particular the excessive smoothing of fine characteristics of contours evolving under Level Set. In relation to this, the application of the variant Particle Level Set is suggested as a solution, for its intrinsic proved capability to preserve mass of dynamic fronts. At the end, synthetic and real data sets are used to evaluate the presented tridimensional surface reconstruction methodology qualitatively.
Resumo:
Evolving interfaces were initially focused on solutions to scientific problems in Fluid Dynamics. With the advent of the more robust modeling provided by Level Set method, their original boundaries of applicability were extended. Specifically to the Geometric Modeling area, works published until then, relating Level Set to tridimensional surface reconstruction, centered themselves on reconstruction from a data cloud dispersed in space; the approach based on parallel planar slices transversal to the object to be reconstructed is still incipient. Based on this fact, the present work proposes to analyse the feasibility of Level Set to tridimensional reconstruction, offering a methodology that simultaneously integrates the proved efficient ideas already published about such approximation and the proposals to process the inherent limitations of the method not satisfactorily treated yet, in particular the excessive smoothing of fine characteristics of contours evolving under Level Set. In relation to this, the application of the variant Particle Level Set is suggested as a solution, for its intrinsic proved capability to preserve mass of dynamic fronts. At the end, synthetic and real data sets are used to evaluate the presented tridimensional surface reconstruction methodology qualitatively.
Resumo:
This in situ study investigated, using scanning electron microscopy, the effect of stimulated saliva on the enamel surface of bovine and human substrates submitted to erosion followed by brushing abrasion immediately or after one hour. During 2 experimental 7-day crossover phases, 9 previously selected volunteers wore intraoral palatal devices, with 12 enamel specimens (6 human and 6 bovine). In the first phase, the volunteers immersed the device for 5 minutes in 150 ml of a cola drink, 4 times a day (8h00, 12h00, 16h00 and 20h00). Immediately after the immersions, no treatment was performed in 4 specimens (ERO), 4 other specimens were immediately brushed (0 min) using a fluoride dentifrice and the device was replaced into the mouth. After 60 min, the other 4 specimens were brushed. In the second phase, the procedures were repeated but, after the immersions, the volunteers stimulated the salivary flow rate by chewing a sugar-free gum for 30 min. Enamel superficial alterations of all specimens were then evaluated using a scanning electron microscope. Enamel prism core dissolution was seen on the surfaces submitted to erosion, while on those submitted to erosion and to abrasion (both at 0 and 60 min) a more homogeneous enamel surface was observed, probably due to the removal of the altered superficial prism layer. For all the other variables - enamel substrate and salivary stimulation -, the microscopic pattern of the enamel specimens was similar.
Resumo:
One of the most important properties of artificial teeth is the abrasion wear resistance, which is determinant in the maintenance of the rehabilitation's occlusal pattern. OBJECTIVES: This in vitro study aims to evaluate the abrasion wear resistance of 7 brands of artificial teeth opposed to two types of antagonists. MATERIAL AND METHODS: Seven groups were prepared with 12 specimens each (BIOLUX & BL, TRILUX & TR, BLUE DENT & BD, BIOCLER & BC, POSTARIS & PO, ORTHOSIT & OR, GNATHOSTAR & GN), opposed to metallic (M & nickel-chromium alloy), and to composite antagonists (C & Solidex indirect composite). A mechanical loading device was used (240 cycles/min, 4 Hz speed, 10 mm antagonist course). Initial and final contours of each specimen were registered with aid of a profile projector (20x magnification). The linear difference between the two profiles was measured and the registered values were subjected to ANOVA and Tukey's test. RESULTS: Regarding the antagonists, only OR (M = 10.45 ± 1.42 µm and C = 2.77 ± 0.69 µm) and BC (M = 6.70 ± 1.37 µm and C = 4.48 ± 0.80 µm) presented statistically significant differences (p < 0.05). Best results were obtained with PO (C = 2.33 ± 0.91 µm and M = 1.78 ± 0.42 µm), followed by BL (C = 3.70 ± 1.32 µm and M = 3.70 ± 0.61 µm), statistically similar for both antagonists (p>0.05). Greater result variance was obtained with OR, which presented the worse results opposed to Ni-Cr (10.45 ± 1.42 µm), and results similar to the best ones against composite (2.77 ± 0.69 µm). CONCLUSIONS: Within the limitations of this study, it may be concluded that the antagonist material is a factor of major importance to be considered in the choice of the artificial teeth to be used in the prosthesis.
Resumo:
OBJECTIVE: To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems. Materials and Methods: Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV - self-priming etchant (Tyrian-SPE). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey's test (α=0.05). RESULTS: Marginal seal provided by air abrasion was similar to high-speed handpiece, except for group I. There was SIGNIFICANT difference between enamel and dentin/cementum margins for to group I and II: air abrasion. The etch-and-rinse adhesive system promoted a better marginal seal. At enamel and dentin/cementum margins, the highest microleakage values were found in cavities treated with the self-etching adhesive system. At dentin/cementum margins, high-speed handpiece preparations associated with etch-and-rinse system provided the least dye penetration. CONCLUSION: Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins.
Resumo:
The objective of the study is to evaluate the effect of the daily variation in concentrations of fine particulate matter (diameter less than 2.5µm - PM2.5) resulting from the burning of biomass on the daily number of hospitalizations of children and elderly people for respiratory diseases, in Alta Floresta and Tangará da Serra in the Brazilian Amazon in 2005. This is an ecological time series study that uses data on daily number of hospitalizations of children and the elderly for respiratory diseases, and estimated concentration of PM2.5. In Alta Floresta, the percentage increases in the relative risk (%RR) of hospitalization for respiratory diseases in children were significant for the whole year and for the dry season with 3-4 day lags. In the dry season these measurements reach 6% (95%CI: 1.4-10.8). The associations were sig-nificant for moving averages of 3-5 days. The %RR for the elderly was significant for the current day of the drought, with a 6.8% increase (95%CI: 0.5-13.5) for each additional 10µg/m3 of PM2.5. No as-sociations were verified for Tangara da Serra. The PM2.5 from the burning of biomass increased hospitalizations for respiratory diseases in children and the elderly.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
BACKGROUND: The findings of prior studies of air pollution effects on adverse birth outcomes are difficult to synthesize because of differences in study design. OBJECTIVES: The International Collaboration on Air Pollution and Pregnancy Outcomes was formed to understand how differences in research methods contribute to variations in findings. We initiated a feasibility study to a) assess the ability of geographically diverse research groups to analyze their data sets using a common protocol and b) perform location-specific analyses of air pollution effects on birth weight using a standardized statistical approach. METHODS: Fourteen research groups from nine countries participated. We developed a protocol to estimate odds ratios (ORs) for the association between particulate matter <= 10 mu m in aerodynamic diameter (PM(10)) and low birth weight (LBW) among term births, adjusted first for socioeconomic status (SES) and second for additional location-specific variables. RESULTS: Among locations with data for the PM(10) analysis, ORs estimating the relative risk of term LBW associated with a 10-mu g/m(3) increase in average PM(10) concentration during pregnancy, adjusted for SES, ranged from 0.63 [95% confidence interval (CI), 0.30-1.35] for the Netherlands to 1.15 (95% CI, 0.61-2.18) for Vancouver, with six research groups reporting statistically significant adverse associations. We found evidence of statistically significant heterogeneity in estimated effects among locations. CONCLUSIONS: Variability in PM(10)-LBW relationships among study locations remained despite use of a common statistical approach. A more detailed meta-analysis and use of more complex protocols for future analysis may uncover reasons for heterogeneity across locations. However, our findings confirm the potential for a diverse group of researchers to analyze their data in a standardized way to improve understanding of air pollution effects on birth outcomes.
Resumo:
BACKGROUND: Ambient levels of air pollution may affect the health of children, as indicated by studies of infant and perinatal mortality. Scientific evidence has also correlated low birth weight and preterm birth, which are important determinants of perinatal death, with air pollution. However, most of these studies used ambient concentrations measured at monitoring sites, which may not consider differential exposure to pollutants found at elevated concentrations near heavy-traffic roadways. OBJECTIVES: Our goal was to examine the association between traffic-related pollution and perinatal mortality. METHODS: We used the information collected for a case-control study conducted in 14 districts in the City of Sao Paulo, Brazil, regarding risk factors for perinatal deaths. We geocoded the residential addresses of cases (fetal and early neonatal deaths) and controls (children who survived the 28th day of life) and calculated a distance-weighted traffic density (DWTD) measure considering all roads contained in a buffer surrounding these homes. RESULTS: Logistic regression revealed a gradient of increasing risk of early neonatal death with higher exposure to traffic-related air pollution. Mothers exposed to the highest quartile of the DWTD compared with those less exposed exhibited approximately 50% increased risk (adjusted odds ratio = 1.47; 95% confidence interval, 0.67-3.19). Associations for fetal mortality were less consistent. CONCLUSIONS: These results suggest that motor vehicle exhaust exposures may be a risk factor for perinatal mortality.