923 resultados para acetone reforming
Resumo:
Fuel cell as molten carbonate fuel cell (MCFC) operates at high temperatures. Thus, cogeneration processes may be performed, generating heat for its own process or for other purposes of steam generation in the industry. The use of ethanol is one of the best options because this is a renewable and less environmentally offensive fuel, and is cheaper than oil-derived hydrocarbons, as in the case of Brazil. In that country, because of technical, environmental, and economic advantages, the use of ethanol by steam reforming process has been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where the highest volumes of products are produced, making possible a higher production of energy, that is, a more efficient use of resources. To attain this objective, mass and energy balances were performed. Equilibrium constants and advance degrees were calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree (according to Castellan 1986, Fundamentos da Fisica/Quimica, Editora LTC, Rio de Janeiro, p. 529, in Portuguese) is a coefficient that indicates the evolution of a reaction, achieving a maximum value when all the reactants' content is used of reforming increases when the operation temperature also increases and when the operation pressure decreases. However, at atmospheric pressure (1 atm), the advance degree tends to stabilize in temperatures above 700 degrees C; that is, the volume of supplemental production of reforming products is very small with respect to high use of energy resources necessary. The use of unused ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at the same tension, is higher at 700 degrees C than other studied temperatures such as 600 and 650 degrees C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8% and 58.9% in temperatures between 600 and 700 degrees C. The higher calculated current density is 280 mA/cm(2). The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced powers at 190 mA/cm(2) are 99.8, 109.8, and 113.7 mW/cm(2) for 873, 923, and 973 K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describe a process of internal steam reforming of ethanol.
Resumo:
The structure of acetone and dimethyl sulfoxide in the liquid phase is investigated using Monte Carlo simulations and MM2 calculations. The principal site - site correlations and degree of structure in both liquids have been investigated. The results showed that dimethyl sulfoxide is more structured than acetone. At short distances the dipoles of neighboring molecules are found to be in antiparallel configurations, but further apart the molecules tend to be aligned predominantly as head to tail. In both liquids there is evidence of strong methyl - oxygen interaction, important to the structure of the liquids. The contacts suggest weak hydrogen bonds between methyl hydrogen and oxygen.
Resumo:
The isotherms of adsorption of CuX2 (X = Cl-, Br, ClO4-,) by silica gel chemically modified with thiazolidine-2-thione were studied in acetone (ac) and ethanol (eth) solutions at 25 degrees C. The following equilibrium constants (in 1 mol(-1)) were determined: a) CuCl2, 1.9 x 10(3) (ac), 1.6 x 10(3) (eth); b) CuBr2, 1.7 x 10(3) (ac), 1.2 x 10(3) (eth); c) Cu(ClO4)(2), 1.1 x 10(3) (ac), 1.0 x 10(3) (eth). The electron spin resonance spectra of the surface complexes indicate a tetragonal distorted structure in the case of lower degrees of metal loading on the chemically modified surface. The d-d electronic transition spectra show that for the ClO4- complex, the peak of absorption did not change for any degree of metal loading, and for Cl- and Br complexes, the peak maxima shift to higher energy with lower metal loading.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Monte Carlo simulation results for pure liquid acetone and water-acetone mixtures calculated in the isothermal and isobaric (NPT) ensemble at T=298K and p=1.0atm are presented. The TIP4P model was used for water and optimized potential for liquid simulation (OPLS) force field parameters used for acetone. The results obtained for the average configurational energy as a function of the mole fraction are in good accord with experimental data. Energy partitioning and co-ordination numbers results calculated for equimolar water-acetone solution are compared to similar data obtained for other water-organic liquid mixtures. These results show an increase in water-water interaction energy and co-ordination numbers when the interaction between water and organic liquid molecules decrease. Distribution functions for pure liquid acetone and water-acetone mixtures are presented. Dipole-dipole angular correlation functions obtained for pure liquid acetone show a predominance of dimers with parallel alignment of dipole moments. Radial distribution functions from water-acetone interaction show characteristic features of hydrogen bonded liquids. Radial and angular distribution functions for water-water correlation calculated in pure water and in equimolar water-acetone mixture are compared, showing very similar features in both systems. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Silica xerogels were prepared from sonohydrolysis of tetraethoxysilane and exchange of the liquid phase of the wet gel by acetone. Monolithic xerogels were obtained by slow evaporation of acetone. The structural characteristics of the xerogels were studied as a function of temperature up to 1100 degrees C by means of bulk and skeletal density measurements, linear shrinkage measurements and thermal analyses (DTA, TG and DL). The results were correlated with the evolution in the UV-Vis absorption. Particularly, the initial pore structure of the dried acetone-exchanged xerogel was studied by small-angle X-ray scattering and nitrogen adsorption. The acetone-exchanged xerogels exhibit greater porosity in the mesopore region presenting greater mean pore size (similar to 4 nm) when compared to non-exchanged xerogels. The porosity of the xerogels is practically stable in the temperature range between 200 degrees C and 800 degrees C. Evolution in the structure of the solid particles (silica network) is the predominant process upon heating up to about 400 degrees C and pore elimination is the predominant process above 900 degrees C. At 1000 degrees C the xerogels are still monolithic and retain about 5 vol.% pores. The xerogels exhibited foaming phenomenon after hold for 10 h at 1100 degrees C. This temperature is even higher than that found for foaming of non-exchanged xerogels. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The excess enthalpy of mixing of acetone-water was measured at 25°C in the 0-1 molar fraction range. The minimum and the maximum in the H E (X 2) curve occurred at X 2 = 0.18 and X 2 = 0.85, respectively. The excess partial molar and other excess quantities were also calculated for the acetone-water system at 25°C. The results are interpreted in view of the influence of acetone on the structure of water. © 1983.
Resumo:
Chemically bonded phases were obtained by reaction of 2-, 3-, and 4-aminobenzoate with 3-chloropropyl-silica gel. These phases were employed for metal cation adsorption in a batch method and applied to the separation of transition metal cations by chromatographic analysis.