968 resultados para ZnS-CdS
Resumo:
"Nano-onions" with multifold alternating CdS/CdSe or CdSe/CdS structure have been synthesized via a two-phase approach. The influences of shell on photoluminescence (PL) quantum yields (QYs) and PL lifetimes are investigated and discussed. It is found that the outmost shell plays an important role in the PL QYs and PL lifetimes of the multishells "onion-like" nanocrystals. The PL QYs and PL lifetimes fluctuate regularly with CdSe and CdS shells. The PL QY increases when the nanocrystals have an outmost CdS shell; however, it decreases dramatically with the outmost CdSe shell. The trend of the change of PL lifetimes is consistent with that of the QYs. The crystal structure and composition of the novel nano-onions are characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra techniques.
Resumo:
Hybrid organic/inorganic white light-emitting diodes (LEDs) were fabricated of semiconductor polymer poly(N-vinylcarbazole) (PVK) doped with CdSe/CdS core-shell semiconductor quantum dots (QDs). The device, with a structure of indium-tin-oxide (ITO)vertical bar 3,4-polyethylene-dioxythiophene- polystyrene sulfonate (PEDOT:PSS)vertical bar PVK:CdSe/CdS vertical bar Al, emitted a pure white light spanning the whole visible region from 400 to 800 nm. The Commission Internationale del'Eclairage coordinates (CIE) remained at x = 0.33, y = 0.34 at wide applied voltages. The maximum brightness and electroluminescence (EL) efficiency reached 180 cd m(-2) at 19 V and 0.21 cd A(-1) at current density of 2 mA cm(-2), respectively. The realization of the pure white light emission is attributed to the incomplete energy and charge transfer from PVK to CdSe/CdS core-shell QDs.
Resumo:
Ring- and rod-shaped P4VP-b-PS-b-P4VP ( PS, polystyrene; P4VP, poly( 4-vinylpyridine)) triblock copolymer aggregates are used as templates to synthesize ZnS nanocrystals. Herein, PVP serves as both a stabilizing agent and a structure- directing agent. The resulting ZnS nanocrystals could be aligned along the corona of the copolymer aggregates in near-perfect structures through control of both the molar ratio of Zn2+ to P4VP and the reaction time. The diameter of the as-synthesized ZnS layer on the surface of polymer template is approximate 2 - 3 nm. High-resolution transmission electron microscopy images reveal that the ZnS particles are single crystal in a zinc blende structure. This method provides a simple, reproducible route at room temperature to prepare assembled hybrid polymer - semiconductor nanocrystal nanocomposites.
Resumo:
A new solvothermal route has been developed for synthesizing the size-controlled CdSe nanocrystals with relatively narrow size distribution, and the photoluminescence (PL) quantum yields (QYs) of the nanocrystals can reach 5-10%. Then the obtained CdSe nanocrystals served as cores to prepare the core/shell CdSe/CdS nanocrystals via a two-phase thermal approach, which exhibited much higher PL QYs (up to 18-40%) than the CdSe core nanocrystals. The nanocrystal samples were characterized by ultraviolet-visible (UV-vis) absorption spectra, PL spectra, wide-angle Xray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).
Resumo:
CdS nanocrystals were synthesized through AOT/heptane/H2O reverse micelles. New stable reverse mikelles were obtained by adding an appropriate amount of acrylic. acid monomer, CdS nanocrystal-poly(acrylic acid) composites were synthesized by gamma-radiation with a reverse mi'celle route at room temperature. The US nanocrystals with narrow size distribution were, found to be dispersed homogeneously in the poly(acrylic acid) matrix. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Mixed monolayer films of octadecylamine (ODA) and oligo-DNA were prepared by Langmuir-Blodgett technique and the monolayer films were used as template to direct the formation of different CdS nanostructures. It was found that CdS nanowire was observed when the monolayer film prepared at low surface pressure was used as template, and aggregate of CdS spheres was obtained when the monolayer film deposited at high surface pressure was used as template.
Resumo:
利用Langmuir Blodgett技术制备了十八胺 (ODA) /十聚腺嘌呤 (oligo A10 )单分子膜 ,并以其为模板制备了不同形状的CdS纳米结构 .结果表明以在低膜压下转移的寡聚DNA单层膜为模板可诱导生成线形的CdS纳米结构 ,而以在高膜压下转移的寡聚DNA单层膜为模板得到的是CdS的球形结构聚集体.
Resumo:
The TiO2 nanoparticle thin films have been sensitized in situ with CdS nanoparticles. The SPS measurement showed that large surface state density was present on the TiO2 nanoparticles and the surface state can be efficiently decreased by sensitization as well as selecting suitable heat treatment, Both the photocurrent response and the charge recombination kinetics in TiO2 thin films were strongly influenced by trapping/detrapping of surface states. The slow photocurrent response of TiO2 nanoparticulate thin films upon the illumination was attributed to the trap saturation effects, The semiconductor sensitization made the slow photoresponse disappeared and the steady-state photocurrent value increased drastically, which suggested that the sensitization of TiO2 thin films with CdS could get a better charge separation and provide a simple alternative to minimize the effect of surface state on the photocurrent response.
Resumo:
总结了CdS半导体纳米微粒的复合与组装,并介绍了其应用方面的研究。
Resumo:
采用 LB膜技术制备了表面活性剂包埋的硫化镉纳米粒子多层膜 ,并利用傅里叶红外光谱、X射线光电子能谱、原子力显微镜和小角 X射线衍射对其结构进行了表征。结果表明制成的 Cd S纳米粒子 LB膜为准一维超晶格
Resumo:
Surface photovoltage spectra (SPS) measurements of TiO2 show that a large surface state density is present on the TiO2 nanoparticles and these surface states can be efficiently decreased by sensitization using US nanoparticles as well as by suitable heat treatment. The photoelectrochemical behavior of the bare TiO2 thin film indicates that the mechanism of photoelectron transport is controlled by the trapping/detrapping properties of surface states within the thin films, The slow photocurrent response upon the illumination can be explained by the trap saturation effect. For a TiO2 nanoparticulate thin film sensitized using US nanoparticles, the slow photocurrent response disappears and the steady-state photocurrent increases drastically, which suggests that photosensitization can decrease the effect of surface states on photocurrent response.
Resumo:
Nanosized ZnS doped with different concentrations of Eu3+ were prepared and analyzed by x-ray diffraction technique. The experimental results show that ZnS belongs to the cubic structure. From the photoluminescence (PL) emission spectra, it can be seen that the ratio of the emission intensity of Eu3+ 616 nm to that at 590 nm increases as the increasing of Eu3+. This phenomenon reveals that the site symmetry of Eu3+ reduces as the increasing of Eu3+.
Resumo:
本文阐述了利用紫外可见分光光度法检测CdS薄膜光学性质的基本原理,设计了测试系统,并利用所设计的系统对化学水浴法沉积CdS薄膜的光谱透过率进行测试。通过对不同沉积时间的CdS薄膜的光学性能分析,得出其在一定温度条件下沉积时间对薄膜的光学性质有较大的影响。
Resumo:
光敏CdS粉的制备与性能研究王岚*鲍崇林王给祥(中国科学院长春应用化学研究所,长春130022)关键词半导体,掺杂CdS,烧结,静电复印硫化镉(CdS)是重要的半导体材料,尤其在可见光范围,已经应用到光电导、压电晶体和激光材料上[1].随着近代微电子…