943 resultados para X-Rays.
Resumo:
The surface oxidation of UO2 sintered plates at 170-275 ° C was studied in situ by high temperature X-ray diffractometry. At very low oxygen concentration, UO2 is oxidized to U4O9, while at 300°C and argon-20 vol% oxygen it is oxidized up to U3O7. X-ray diffraction profiles of the UO2, U4O9 and U3O7 phases were well characterized during the transformations. The activation energy for the transformation of UO2 to U4O9, obtained from X-ray diffraction data, was found to be 117 ± 9 kJ/mol and 90 ± 14 kJ/mol for the β-(311) and α-(200) reflections, respectively. © 1991.
Resumo:
Thin films of chemically synthesized polyaniline and poly(o-methoxyaniline) were exposed to ionizing X-ray radiation and characterized by radiation induced conductivity measurements, ultraviolet-visible spectroscopy, electron paramagnetic resonance, electrical conductivity and solubility measurements. Samples irradiated in vacuum or dry Oxygen atmosphere did not have their electronic spectra changed. However, under humid atmosphere the energy of the excitonic transition was decreased and accompanied by a great conductivity increase. The results indicate that doping of polyaniline can be induced by X-ray radiation which might be of great interest for applications on lithography and microelectronics.
Resumo:
Large single crystals have been obtained of SIII-SPIII, a phospholipase A2 from the venom of Bothrops jararacussu. The crystals belong to the orthorhombic system space group C222, and diffract X-rays to a resolution of 1.9 Å. Preliminary analysis reveals the presence of one molecule in the crystallographic asymmetric unit. The crystal structure is currently being determined using molecular replacement techniques.
Resumo:
Illumination of photorefractive, iron-doped lithium niobate crystals (LiNbO 3:Fe) with x-rays generates a conductivity that we determine from the speed of hologram erasure. The doping levels of the crystals and the acceleration voltage of our x-ray tube are varied. A theoretical model is presented, which describes the obtained results. A decrease of the conductivity with increasing Fe 2+ concentration can be explained by assuming that holes are the dominant charge carriers for this short-wavelength illumination.
Resumo:
A novel instrument for measurement of X-ray intensity from mammography consists of a sensitive pyro-electric detector, a high-sensitivity, low-noise current-to-voltage converter, a microcontroller and a digital display. The heart of this device, and what makes it unique is the pyro-electric detector, which measures radiation by converting heat from absorbed incident X-rays into an electric current. This current is then converted to a voltage and digitised. The detector consists of a ferro-electric crystal; two types were tested; lithium tantalate and lithium niobate. X-ray measurement in mammography is challenging because of its relatively low photon energy range, from 11 keV to 15 keV equivalent mean energy, corresponding to a peak tube potential from 22 to 36 kV. Consequently, energy fluence rate or intensity is low compared with that of common diagnostic X-ray. The instrument is capable of measuring intensities as low as 0.25 mWm -2 with precision greater than 99%. Not only was the instrument capable of performing in the clinical environment, with high background electromagnetic interference and vibration, but its performance was not degraded after being subjected to 140 roentgen (3.6 × 10 -2 C kg -2 air) as measured by piezo-electric (d 33) or pyro-electric coefficients. © IFMBE 2005.
Resumo:
A microcontrolled instrument for measuring the energy fluence rate (or intensity) of X-ray pulses in the orthovoltage range of 120 to 300 kV is described. The prototype instrument consists of a pyroelectric sensor, a low-noise highsensitivity current-to-voltage converter, a microcontroller and a digital display. The response of the instrument is nonlinear with the intensity of the radiation. The precision is better than 3%. The equipment is inexpensive, rugged, simple to construct and has good long-term stability. © 2009 Springer-Verlag.
Resumo:
In this work is presented a versatile system for X-ray excited optical luminescence (XEOL) measurements. The apparatus was assembled from a sample holder connected to an optical fiber responsibly for the acquisition of the scintillation signal. The spectrum is registered with a CCD coupled in a spectrograph provided with diffraction gratings. The system performance was analyzed by exciting GdAlO3:Eu3+ 3.0 at.% with X-rays from a diffractometer and measuring the emission spectra. The system can be used to obtain precise and reliable spectroscopic properties of samples with various conformations without the loss of the required safety when dealing with ionizing radiations.
Resumo:
The X-ray Fluorescence (XRF) analysis is a technique for the qualitative and quantitative determination of chemical constituents in a sample. This method is based on detection of the characteristic radiation intensities emitted by the elements of the sample, when properly excited. A variant of this technique is the Total Reflection X-ray Fluorescence (TXRF) that utilizes electromagnetic radiation as excitation source. In total reflection of X-ray, the angle of refraction of the incident beam tends to zero and the refracted beam is tangent to the sample support interface. Thus, there is a minimum angle of incidence at which no refracted beam exists and all incident radiation undergoes total reflection. In this study, we evaluated the influence of the energy variation of the beam of incident x-rays, using the MCNPX code (Monte Carlo NParticle) based on Monte Carlo method. © 2013 AIP Publishing LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Apoptosis is a form of programmed cell death selectively removes abnormal cells, and thus contributes to maintaining the balance of the dynamics of cell reproduction. Therefore the verification of the occurrence of apoptotic cell death after a pathological stimulus is crucial for the analysis of the maintenance of normal cell cycle of a given tissue or organ. In this experiment were used cells lines human mammary tumor MDAMB231, T47, MCF7, which were irradiated with X-rays at a dose of 5 Gy in a time interval of 15 seconds, and filtration of 1mm aluminum. Samples containing the cells were grown in a specific culture medium, containing fetal bovine serum and growth factor, and two samples were prepared with each of the cell lines, one to be irradiated, and another that has not been irradiated, which denoted by negative control of the irradiation. The primary goal of the experiment was to verify and compare the rates of apoptosis in each cell lines, in which were irradiated and that were not irradiated, using flow cytometry as a method for detecting apoptotic cell death in together with specific markers annexin V and propidium iodide. Data from the readings made by flow cytometry were analyzed and interpreted using the software WinMDI statistical graph. By comparing the indices relating to the readings of positive and negative for specific markers of apoptosis, based on differences in the statistical data presented lectures regarding the cellular irradiated and not irradiated, collude cells in question once... (Complete abstract click electronic access below)
Resumo:
The small angle X-ray scattering (SAXS) technique has been used with very much versatility and success in the structural characterization of nanostructured materials. The present work deals with a study of the principles of the SAXS technique and of some classical models employed in the structural characterization of nanostructured materials. Particularly, the study of the models and of the associated methodologies is applied to a set of samples of silica gels, of varied typical structures, prepared in the Laboratório de Novos Materiais of the Departamento de Física of the IGCE. The work discusses in an introductory chapter the principles of the SAXS technique and the foundation of classical models often used in the structural characterization of materials. The classical models and the associated methodologies were applied to a variety of silica gel structures. The studies include: i) the scattering from a system of particles - Guinier's law; ii) the asymptotic scattering from a two-phase system - Porod's law; iii) systematic deviation from Porod's law - Surface Fractal; iv) heterogeneities in solids with random size distribution - DAB Model; and v) the scattering from mass fractal structures. The analyses were carried out from experimental SAXS data obtained in several opportunities at the Laboratório Nacional de Luz Síncrotron (LNLS)
Resumo:
The huge demand for procedures involving ionizing radiation promotes the need for safe methods of experimentation considering the danger of their biological e ects with consequent risk to humans. Brazilian's legislation prohibits experiments involving this type of radiation in humans through Decree 453 of Ministry of Health with determines that such procedures comply with the principles of justi cation, optimization and dose limitation. In this line, concurrently with the advancement of available computer processing power, computing simulations have become relevant in those situations where experimental procedures are too cost or impractical. The Monte Carlo method, created along the Manhattan Project duringWorldWar II, is a powerful strategy to simulations in computational physics. In medical physics, this technique has been extensively used with applications in diagnostics and cancer treatment. The objective of this work is to simulate the production and detection of X-rays for the energy range of diagnostic radiology, for molybdenum target, using the Geant4 toolkit. X-ray tubes with this kind of target material are used in diagnostic radiology, speci cally in mammography, one of the most used techniques for screening of breast cancer in women. During the simulations, we used di erent models for bremsstrahlung available in physical models for low energy, in situations already covered by the literature in earlier versions of Geant4. Our results show that although the physical situations seems qualitatively adequate, quantitative comparisons to available analytical data shows aws in the code of Geant4 Low Energy source