978 resultados para Water Allocation
Resumo:
This work investigates the computer modelling of the photochemical formation of smog products such as ozone and aerosol, in a system containing toluene, NOx and water vapour. In particular, the problem of modelling this process in the Commonwealth Scientific and Industrial Research Organization (CSIRO) smog chambers, which utilize outdoor exposure, is addressed. The primary requirement for such modelling is a knowledge of the photolytic rate coefficients. Photolytic rate coefficients of species other than N02 are often related to JNo2 (rate coefficient for the photolysis ofN02) by a simple factor, but for outdoor chambers, this method is prone to error as the diurnal profiles may not be similar in shape. Three methods for the calculation of diurnal JNo2 are investigated. The most suitable method for incorporation into a general model, is found to be one which determines the photolytic rate coefficients for N02, as well as several other species, from actinic flux, absorption cross section and quantum yields. A computer model was developed, based on this method, to calculate in-chamber photolysis rate coefficients for the CSIRO smog chambers, in which ex-chamber rate coefficients are adjusted by accounting for variation in light intensity by transmittance through the Teflon walls, albedo from the chamber floor and radiation attenuation due to clouds. The photochemical formation of secondary aerosol is investigated in a series of toluene-NOx experiments, which were performed in the CSIRO smog chambers. Three stages of aerosol formation, in plots of total particulate volume versus time, are identified: a delay period in which no significant mass of aerosol is formed, a regime of rapid aerosol formation (regime 1) and a second regime of slowed aerosol formation (regime 2). Two models are presented which were developed from the experimental data. One model is empirically based on observations of discrete stages of aerosol formation and readily allows aerosol growth profiles to be calculated. The second model is based on an adaptation of published toluene photooxidation mechanisms and provides some chemical information about the oxidation products. Both models compare favorably against the experimental data. The gross effects of precursor concentrations (toluene, NOx and H20) and ambient conditions (temperature, photolysis rate) on the formation of secondary aerosol are also investigated, primarily using the mechanism model. An increase in [NOx]o results in increased delay time, rate of aerosol formation in regime 1 and volume of aerosol formed in regime 1. This is due to increased formation of dinitrocresol and furanone products. An increase in toluene results in a decrease in the delay time and an increase in the rate of aerosol formation in regime 1, due to enhanced reactivity from the toluene products, such as the radicals from the photolysis of benzaldehyde. Water vapor has very little effect on the formation of aerosol volume, except that rates are slightly increased due to more OH radicals from reaction with 0(1D) from ozone photolysis. Increased temperature results in increased volume of aerosol formed in regime 1 (increased dinitrocresol formation), while increased photolysis rate results in increased rate of aerosol formation in regime 1. Both the rate and volume of aerosol formed in regime 2 are increased by increased temperature or photolysis rate. Both models indicate that the yield of secondary particulates from hydrocarbons (mass concentration aerosol formed/mass concentration hydrocarbon precursor) is proportional to the ratio [NOx]0/[hydrocarbon]0
Resumo:
Hydrogel polymers are used for the manufacture of soft (or disposable) contact lenses worldwide today, but have a tendency to dehydrate on the eye. In vitro methods that can probe the potential for a given hydrogel polymer to dehydrate in vivo are much sought after. Nuclear magnetic resonance (NMR) has been shown to be effective in characterising water mobility and binding in similar systems (Barbieri, Quaglia et al., 1998, Larsen, Huff et al., 1990, Peschier, Bouwstra et al., 1993), predominantly through measurement of the spin-lattice relaxation time (T1), the spinspin relaxation time (T2) and the water diffusion coefficient (D). The aim of this work was to use NMR to quantify the molecular behaviour of water in a series of commercially available contact lens hydrogels, and relate these measurements to the binding and mobility of the water, and ultimately the potential for the hydrogel to dehydrate. As a preliminary study, in vitro evaporation rates were measured for a set of commercial contact lens hydrogels. Following this, comprehensive measurement of the temperature and water content dependencies of T1, T2 and D was performed for a series of commercial hydrogels that spanned the spectrum of equilibrium water content (EWC) and common compositions of contact lenses that are manufactured today. To quantify material differences, the data were then modelled based on theory that had been used for similar systems in the literature (Walker, Balmer et al., 1989, Hills, Takacs et al., 1989). The differences were related to differences in water binding and mobility. The evaporative results suggested that the EWC of the material was important in determining a material's potential to dehydrate in this way. Similarly, the NMR water self-diffusion coefficient was also found to be largely (if not wholly) determined by the WC. A specific binding model confirmed that the we was the dominant factor in determining the diffusive behaviour, but also suggested that subtle differences existed between the materials used, based on their equilibrium we (EWC). However, an alternative modified free volume model suggested that only the current water content of the material was important in determining the diffusive behaviour, and not the equilibrium water content. It was shown that T2 relaxation was dominated by chemical exchange between water and exchangeable polymer protons for materials that contained exchangeable polymer protons. The data was analysed using a proton exchange model, and the results were again reasonably correlated with EWC. Specifically, it was found that the average water mobility increased with increasing EWe approaching that of free water. The T1 relaxation was also shown to be reasonably well described by the same model. The main conclusion that can be drawn from this work is that the hydrogel EWe is an important parameter, which largely determines the behaviour of water in the gel. Higher EWe results in a hydrogel with water that behaves more like bulk water on average, or is less strongly 'bound' on average, compared with a lower EWe material. Based on the set of materials used, significant differences due to composition (for materials of the same or similar water content) could not be found. Similar studies could be used in the future to highlight hydrogels that deviate significantly from this 'average' behaviour, and may therefore have the least/greatest potential to dehydrate on the eye.
Resumo:
Bioelectrical impedance analysis, (BIA), is a method of body composition analysis first investigated in 1962 which has recently received much attention by a number of research groups. The reasons for this recent interest are its advantages, (viz: inexpensive, non-invasive and portable) and also the increasing interest in the diagnostic value of body composition analysis. The concept utilised by BIA to predict body water volumes is the proportional relationship for a simple cylindrical conductor, (volume oc length2/resistance), which allows the volume to be predicted from the measured resistance and length. Most of the research to date has measured the body's resistance to the passage of a 50· kHz AC current to predict total body water, (TBW). Several research groups have investigated the application of AC currents at lower frequencies, (eg 5 kHz), to predict extracellular water, (ECW). However all research to date using BIA to predict body water volumes has used the impedance measured at a discrete frequency or frequencies. This thesis investigates the variation of impedance and phase of biological systems over a range of frequencies and describes the development of a swept frequency bioimpedance meter which measures impedance and phase at 496 frequencies ranging from 4 kHz to 1 MHz. The impedance of any biological system varies with the frequency of the applied current. The graph of reactance vs resistance yields a circular arc with the resistance decreasing with increasing frequency and reactance increasing from zero to a maximum then decreasing to zero. Computer programs were written to analyse the measured impedance spectrum and determine the impedance, Zc, at the characteristic frequency, (the frequency at which the reactance is a maximum). The fitted locus of the measured data was extrapolated to determine the resistance, Ro, at zero frequency; a value that cannot be measured directly using surface electrodes. The explanation of the theoretical basis for selecting these impedance values (Zc and Ro), to predict TBW and ECW is presented. Studies were conducted on a group of normal healthy animals, (n=42), in which TBW and ECW were determined by the gold standard of isotope dilution. The prediction quotients L2/Zc and L2/Ro, (L=length), yielded standard errors of 4.2% and 3.2% respectively, and were found to be significantly better than previously reported, empirically determined prediction quotients derived from measurements at a single frequency. The prediction equations established in this group of normal healthy animals were applied to a group of animals with abnormally low fluid levels, (n=20), and also to a group with an abnormal balance of extra-cellular to intracellular fluids, (n=20). In both cases the equations using L2/Zc and L2/Ro accurately and precisely predicted TBW and ECW. This demonstrated that the technique developed using multiple frequency bioelectrical impedance analysis, (MFBIA), can accurately predict both TBW and ECW in both normal and abnormal animals, (with standard errors of the estimate of 6% and 3% for TBW and ECW respectively). Isotope dilution techniques were used to determine TBW and ECW in a group of 60 healthy human subjects, (male. and female, aged between 18 and 45). Whole body impedance measurements were recorded on each subject using the MFBIA technique and the correlations between body water volumes, (TBW and ECW), and heighe/impedance, (for all measured frequencies), were compared. The prediction quotients H2/Zc and H2/Ro, (H=height), again yielded the highest correlation with TBW and ECW respectively with corresponding standard errors of 5.2% and 10%. The values of the correlation coefficients obtained in this study were very similar to those recently reported by others. It was also observed that in healthy human subjects the impedance measured at virtually any frequency yielded correlations not significantly different from those obtained from the MFBIA quotients. This phenomenon has been reported by other research groups and emphasises the need to validate the technique by investigating its application in one or more groups with abnormalities in fluid levels. The clinical application of MFBIA was trialled and its capability of detecting lymphoedema, (an excess of extracellular fluid), was investigated. The MFBIA technique was demonstrated to be significantly more sensitive, (P<.05), in detecting lymphoedema than the current technique of circumferential measurements. MFBIA was also shown to provide valuable information describing the changes in the quantity of muscle mass of the patient during the course of the treatment. The determination of body composition, (viz TBW and ECW), by MFBIA has been shown to be a significant improvement on previous bioelectrical impedance techniques. The merit of the MFBIA technique is evidenced in its accurate, precise and valid application in animal groups with a wide variation in body fluid volumes and balances. The multiple frequency bioelectrical impedance analysis technique developed in this study provides accurate and precise estimates of body composition, (viz TBW and ECW), regardless of the individual's state of health.
Resumo:
In Australia and many other countries worldwide, water used in the manufacture of concrete must be potable. At present, it is currently thought that concrete properties are highly influenced by the water type used and its proportion in the concrete mix, but actually there is little knowledge of the effects of different, alternative water sources used in concrete mix design. Therefore, the identification of the level and nature of contamination in available water sources and their subsequent influence on concrete properties is becoming increasingly important. Of most interest, is the recycled washout water currently used by batch plants as mixing water for concrete. Recycled washout water is the water used onsite for a variety of purposes, including washing of truck agitator bowls, wetting down of aggregate and run off. This report presents current information on the quality of concrete mixing water in terms of mandatory limits and guidelines on impurities as well as investigating the impact of recycled washout water on concrete performance. It also explores new sources of recycled water in terms of their quality and suitability for use in concrete production. The complete recycling of washout water has been considered for use in concrete mixing plants because of the great benefit in terms of reducing the cost of waste disposal cost and environmental conservation. The objective of this study was to investigate the effects of using washout water on the properties of fresh and hardened concrete. This was carried out by utilizing a 10 week sampling program from three representative sites across South East Queensland. The sample sites chosen represented a cross-section of plant recycling methods, from most effective to least effective. The washout water samples collected from each site were then analysed in accordance with Standards Association of Australia AS/NZS 5667.1 :1998. These tests revealed that, compared with tap water, the washout water was higher in alkalinity, pH, and total dissolved solids content. However, washout water with a total dissolved solids content of less than 6% could be used in the production of concrete with acceptable strength and durability. These results were then interpreted using chemometric techniques of Principal Component Analysis, SIMCA and the Multi-Criteria Decision Making methods PROMETHEE and GAIA were used to rank the samples from cleanest to unclean. It was found that even the simplest purifying processes provided water suitable for the manufacture of concrete form wash out water. These results were compared to a series of alternative water sources. The water sources included treated effluent, sea water and dam water and were subject to the same testing parameters as the reference set. Analysis of these results also found that despite having higher levels of both organic and inorganic properties, the waters complied with the parameter thresholds given in the American Standard Test Method (ASTM) C913-08. All of the alternative sources were found to be suitable sources of water for the manufacture of plain concrete.
Resumo:
We used Monte Carlo simulations of Brownian dynamics of water to study anisotropic water diffusion in an idealised model of articular cartilage. The main aim was to use the simulations as a tool for translation of the fractional anisotropy of the water diffusion tensor in cartilage into quantitative characteristics of its collagen fibre network. The key finding was a linear empirical relationship between the collagen volume fraction and the fractional anisotropy of the diffusion tensor. Fractional anisotropy of the diffusion tensor is potentially a robust indicator of the microstructure of the tissue because, in the first approximation, it is invariant to the inclusion of proteoglycans or chemical exchange between free and collagen-bound water in the model. We discuss potential applications of Monte Carlo diffusion-tensor simulations for quantitative biophysical interpretation of MRI diffusion-tensor images of cartilage. Extension of the model to include collagen fibre disorder is also discussed.
Resumo:
There are a number of gel dosimeter calibration methods in contemporary usage. The present study is a detailed Monte Carlo investigation into the accuracy of several calibration techniques. Results show that for most arrangements the dose to gel accurately reflects the dose to water, with the most accurate method involving the use of a large diameter flask of gel into which multiple small fields of varying dose are directed. The least accurate method was found to be that of a long test tube in a water phantom, coaxial with the beam. The large flask method is also the most straightforward and least likely to introduce errors during setup, though, to its detriment, the volume of gel required is much more than other methods.
Resumo:
Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.
Resumo:
Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.
Resumo:
In open railway access markets, a train service provider (TSP) negotiates with an infrastructure provider (IP) for track access rights. This negotiation has been modeled by a multi-agent system (MAS) in which the IP and TSP are represented by separate software agents. One task of the IP agent is to generate feasible (and preferably optimal) track access rights, subject to the constraints submitted by the TSP agent. This paper formulates an IP-TSP transaction and proposes a branch-and-bound algorithm for the IP agent to identify the optimal track access rights. Empirical simulation results show that the model is able to emulate rational agent behaviors. The simulation results also show good consistency between timetables attained from the proposed methods and those derived by the scheduling principles adopted in practice.
Resumo:
This paper explores the conditions of acceptability of differing allocation systems under scarcity and evaluates what makes a price system more or less fair. We find that fairness in an allocation arrangement depend on the institutional settings inherent in the situation, such as information, transparency and competition and the perceived institutional quality e.g., fiscal exchange and institutional trust). Results also indicate that the solution “weak people first” is seen as the fairest approach to an excess demand situation, followed by “first come, first serve”, the price system and an auction system. On the other hand, a random procedure or an allocation through the government is not perceived to be fair. Moreover, economics students seemed to be less sceptical towards the price system than other subjects although we observe that female students are more sceptical than male students.
Resumo:
Groundwater from Maramarua has been identified as coal seam gas (CSG) water by studying its composition, and comparing it against the geochemical signature from other CSG basins. CSG is natural gas that has been produced through thermogenic and biogenic processes in underground coal seams; CSG extraction requires the abstraction of significant amounts of CSG water. To date, no international literature has described coal seam gas water in New Zealand, however recent CSG exploration work has resulted in CSG water quality data from a coal seam in Maramarua, New Zealand. Water quality from this site closely follows the geochemical signature associated with United States CSG waters, and this has helped to characterise the type of water being abstracted. CSG water from this part of Maramarua has low calcium, magnesium, and sulphate concentrations but high sodium (334 mg/l), chloride (146 mg/l) and bicarbonate (435 mg/l) concentrations. In addition, this water has high pH (7.8) and alkalinity (360 mg/l as CaCO3), which is a direct consequence of carbonate dissolution and biogenic processes. Different analyte ratios ('source-rock deduction' method) have helped to identify the different formation processes responsible in shaping Maramarua CSG water
Resumo:
A substantial body of research is focused on understanding the relationships between socio-demographics, land-use characteristics, and mode specific attributes on travel mode choice and time-use patterns. Residential and commercial densities, inter-mixing of land uses, and route directness in conjunction with transportation performance characteristics interact to influence accessibility to destinations as well as time spent traveling and engaging in activities. This study uniquely examines the activity durations undertaken for out-of-home subsistence; maintenance, and discretionary activities. Also examined are total tour durations (summing all activity categories within a tour). Cross-sectional activities are obtained from household activity travel survey data from the Atlanta Metropolitan Region. Time durations allocated to weekdays and weekends are compared. The censoring and endogeneity between activity categories and within individuals are captured using multiple equations Tobit models. The analysis and modeling reveal that land-use characteristics such as net residential density and the number of commercial parcels within a kilometer of a residence are associated with differences in weekday and weekend time-use allocations. Household type and structure are significant predictors across the three activity categories, but not for overall travel times. Tour characteristics such as time-of-day and primary travel mode of the tours also affect traveler's out-of-home activity-tour time-use patterns.
Resumo:
Robustness of the track allocation problem is rarely addressed in literatures and the obtained track allocation schemes (TAS) embody some bottlenecks. Therefore, an approach to detect bottlenecks is needed to support local optimization. First a TAS is transformed to an executable model by Petri nets. Then disturbances analysis is performed using the model and the indicators of the total trains' departure delays are collected to detect bottlenecks when each train suffers a disturbance. Finally, the results of the tests based on a rail hub linking six lines and a TAS about thirty minutes show that the minimum buffer time is 21 seconds and there are two bottlenecks where the buffer times are 57 and 44 seconds respectively, and it indicates that the bottlenecks do not certainly locate at the area where there is minimum buffer time. The proposed approach can further support selection of multi schemes and robustness optimization.