998 resultados para Warming, Eugenius, 1841-1924.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an inter-disciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterise a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual level responses, while acidification has a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multi-scale responses to multiple stressors, in an ecosystem context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mediterranean Sea fisheries supply significant local and international markets, based largely on small pelagic fish, artisanal fisheries and aquaculture of finfish (mainly seabass and seabream) and shellfish (mussels and oysters). Fisheries and aquaculture contribute to the economy of countries bordering this sea and provide food and employment to coastal communities employing ca 600,000 people. Increasing temperatures and heat wave frequency are causing stress and mortality in marine organisms and ocean acidification is expected to worsen these effects, especially for bivalves and coralligenous systems. Recruitment and seed production present possible bottlenecks for shellfish aquaculture in the future since early life stages are vulnerable to acidification and warming. Although adult finfish seem able to withstand the projected increases in seawater CO2, degradation of seabed habitats and increases in harmful blooms of algae and jellyfish might adversely affect fish stocks. Ocean acidification should therefore be factored into fisheries and aquaculture management plans. Rising CO2 levels are expected to reduce coastal biodiversity, altering ecosystem functioning and possibly impacting tourism being the Mediterranean the world’s most visited region. We recommend that ocean acidification is monitored in key areas of the Mediterranean Sea, with regular assessments of the likely socio-economic impacts to build adaptive strategies for the Mediterranean countries concerned.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present stratigraphic observations from three sites in eastern Beringia - Ch'ijee's Bluff in northern Yukon and nearby exposures on the Old Crow River, the Palisades on the Yukon River in Alaska, and placer mining exposures at Thistle Creek in west-central Yukon - which provide insight into the response of permafrost to regional warming during the last interglaciation. Chronology is based on the presence of Old Crow tephra, an important regional stratigraphic marker that dates to late Marine Isotope Stage 6, supplemented by paleoecology and non-finite C ages on wood-rich organic silts. Old Crow tephra overlies several relict ice wedges at the Palisades and Thistle Creek, indicating that permafrost at these sites did not thaw completely during the last interglaciation. Prominent deposits of last interglacial wood-rich organic silt are present at multiple sites in eastern Beringia, and probably represent accumulations of reworked forest vegetation due to thaw slumping or deposition into thermokarst ponds or depressions. Consistent stratigraphic relations between these deposits, Old Crow tephra, and ice wedge pseudomorphs at our three study sites, and at least six other sites in eastern Beringia, suggest that thaw of shallow permafrost was widespread during the last interglaciation. Limited stratigraphic evidence suggests that thaw was probably on the order of meters, rather than 10s of meters. The ubiquity of shallow permafrost degradation during the last interglaciation suggests that current ground warming may foreshadow widespread near-surface thaw under even modest future warming scenarios. However, the persistence of relict pre-last interglacial ice wedges highlights the potential for the regional antiquity of discontinuous permafrost, and provides compelling field evidence for the long-term resilience of deep permafrost during sustained periods of warmer-than-present climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Gamrie, an Aberdeenshire fishing village home to 700 people and six millennialist Protestant churches, global warming is more than just a 'hoax': it is a demonic conspiracy that threatens to bring about the ruin of the entire human race. Such a certainty was rendered intelligible to local Christians by viewing it through the lens of dispensationalist theology brought to the village by the Plymouth Brethren. In a play on Weberian notions of disenchantment, I argue that whereas Gamrie's Christians rejected global warming as a false eschatology, and environmentalism as a false salvationist religion, supporters of the climate change agenda viewed global warming as an apocalyptic reality and environmentalism as providing salvific redemption. Both rhetorics – each engaged in a search for 'signs of the end times' – are thus millenarian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the consequences of biodiversity loss, it is necessary to test how biodiversity-ecosystem functioning relationships may vary with predicted environmental change. In particular, our understanding will be advanced by studies addressing the interactive effects of multiple stressors on the role of biodiversity across trophic levels. Predicted increases in wave disturbance and ocean warming, together with climate-driven range shifts of key consumer species, are likely to have profound impacts on the dynamics of coastal marine communities. We tested whether wave action and temperature modified the effects of gastropod grazer diversity (Patella vulgata, Littorina littorea and Gibbula umbilicalis) on algal assemblages in experimental rock pools. The presence or absence of L. littorea appeared to drive changes in microalgal and macroalgal biomass and macroalgal assemblage structure. Macroalgal biomass also decreased with increasing grazer species richness, but only when wave action was enhanced. Further, independently of grazer diversity, wave action and temperature had interactive effects on macroalgal assemblage structure. Warming also led to a reversal of grazer-macroalgal interaction strengths from negative to positive, but only when there was no wave action. Our results show that hydrodynamic disturbance can exacerbate the effects of changing consumer diversity, and may also disrupt the influence of other environmental stressors on key consumer-resource interactions. These findings suggest that the combined effects of anticipated abiotic and biotic change on the functioning of coastal marine ecosystems, although difficult to predict, may be substantial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of A3/4 representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO(2) and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that global warming will adversely affect ecological communities. As ecosystems are simultaneously exposed to other anthropogenic influences, it is important to address the effects of climate change in the context of many stressors. Nutrient enrichment might offset some of the energy demands that warming can exert on organisms by stimulating growth at the base of the food web. It is important to know whether indirect effects of warming will be as ecologically significant as direct physiological effects. Declining body size is increasingly viewed as a universal response to warming, with the potential to alter trophic interactions. To address these issues, we used an outdoor array of marine mesocosms to examine the impacts of warming, nutrient enrichment and altered top-predator body size on a community comprised of the predator (shore crab Carcinus maenas), various grazing detritivores (amphipods) and algal resources. Warming increased mortality rates of crabs, but had no effect on their moulting rates. Nutrient enrichment and warming had near diametrically opposed effects on the assemblage, confirming that the ecological effects of these two stressors can cancel each other out. This suggests that nutrient-enriched systems might act as an energy refuge to populations of species under metabolic constraints due to warming. While there was a strong difference in assemblages between mesocosms containing crabs compared to mesocosms without crabs, decreasing crab size had no detectable effect on the amphipod or algal assemblages. This suggests that in allometrically balanced communities, the expected long-term effect of warming (declining body size) is not of similar ecological consequence to the direct physiological effects of warming, at least not over the six week duration of the experiment described here. More research is needed to determine the long-term effects of declining body size on the bioenergetic balance of natural communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms.