973 resultados para Video Processing
Resumo:
In free viewpoint applications, the images are captured by an array of cameras that acquire a scene of interest from different perspectives. Any intermediate viewpoint not included in the camera array can be virtually synthesized by the decoder, at a quality that depends on the distance between the virtual view and the camera views available at decoder. Hence, it is beneficial for any user to receive camera views that are close to each other for synthesis. This is however not always feasible in bandwidth-limited overlay networks, where every node may ask for different camera views. In this work, we propose an optimized delivery strategy for free viewpoint streaming over overlay networks. We introduce the concept of layered quality-of-experience (QoE), which describes the level of interactivity offered to clients. Based on these levels of QoE, camera views are organized into layered subsets. These subsets are then delivered to clients through a prioritized network coding streaming scheme, which accommodates for the network and clients heterogeneity and effectively exploit the resources of the overlay network. Simulation results show that, in a scenario with limited bandwidth or channel reliability, the proposed method outperforms baseline network coding approaches, where the different levels of QoE are not taken into account in the delivery strategy optimization.
Resumo:
This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.
Resumo:
In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described.
Resumo:
We present a novel framework for encoding latency analysis of arbitrary multiview video coding prediction structures. This framework avoids the need to consider an specific encoder architecture for encoding latency analysis by assuming an unlimited processing capacity on the multiview encoder. Under this assumption, only the influence of the prediction structure and the processing times have to be considered, and the encoding latency is solved systematically by means of a graph model. The results obtained with this model are valid for a multiview encoder with sufficient processing capacity and serve as a lower bound otherwise. Furthermore, with the objective of low latency encoder design with low penalty on rate-distortion performance, the graph model allows us to identify the prediction relationships that add higher encoding latency to the encoder. Experimental results for JMVM prediction structures illustrate how low latency prediction structures with a low rate-distortion penalty can be derived in a systematic manner using the new model.
Resumo:
Graphics Processing Units have become a booster for the microelectronics industry. However, due to intellectual property issues, there is a serious lack of information on implementation details of the hardware architecture that is behind GPUs. For instance, the way texture is handled and decompressed in a GPU to reduce bandwidth usage has never been dealt with in depth from a hardware point of view. This work addresses a comparative study on the hardware implementation of different texture decompression algorithms for both conventional (PCs and video game consoles) and mobile platforms. Circuit synthesis is performed targeting both a reconfigurable hardware platform and a 90nm standard cell library. Area-delay trade-offs have been extensively analyzed, which allows us to compare the complexity of decompressors and thus determine suitability of algorithms for systems with limited hardware resources.
Resumo:
ATM, SDH or satellite have been used in the last century as the contribution network of Broadcasters. However the attractive price of IP networks is changing the infrastructure of these networks in the last decade. Nowadays, IP networks are widely used, but their characteristics do not offer the level of performance required to carry high quality video under certain circumstances. Data transmission is always subject to errors on line. In the case of streaming, correction is attempted at destination, while on transfer of files, retransmissions of information are conducted and a reliable copy of the file is obtained. In the latter case, reception time is penalized because of the low priority this type of traffic on the networks usually has. While in streaming, image quality is adapted to line speed, and line errors result in a decrease of quality at destination, in the file copy the difference between coding speed vs line speed and errors in transmission are reflected in an increase of transmission time. The way news or audiovisual programs are transferred from a remote office to the production centre depends on the time window and the type of line available; in many cases, it must be done in real time (streaming), with the resulting image degradation. The main purpose of this work is the workflow optimization and the image quality maximization, for that reason a transmission model for multimedia files adapted to JPEG2000, is described based on the combination of advantages of file transmission and those of streaming transmission, putting aside the disadvantages that these models have. The method is based on two patents and consists of the safe transfer of the headers and data considered to be vital for reproduction. Aside, the rest of the data is sent by streaming, being able to carry out recuperation operations and error concealment. Using this model, image quality is maximized according to the time window. In this paper, we will first give a briefest overview of the broadcasters requirements and the solutions with IP networks. We will then focus on a different solution for video file transfer. We will take the example of a broadcast center with mobile units (unidirectional video link) and regional headends (bidirectional link), and we will also present a video file transfer file method that satisfies the broadcaster requirements.
Resumo:
Based on laser beam intensities above 109 W/cm2 with pulse energy of several Joules and duration of nanoseconds, Laser Shock Processing (LSP) is capable of inducing a surface compressive residual stress field. The paper presents experimental results showing the ability of LSP to improve the mechanical strength and cracking resistance of AA2024-T351 friction stir welded (FSW) joints. After introducing the FSW and LSP procedures, the results of microstructural analysis and micro-hardness are discussed. Video Image Correlation was used to measure the displacement and strain fields produced during tensile testing of flat specimens; the local and overall tensile behavior of native FSW joints vs. LSP treated were analyzed. Further, results of slow strain rate tensile testing of the FSW joints, native and LSP treated, performed in 3.5% NaCl solution are presented. The ability of LSP to improve the structural behavior of the FSW joints is underscored.
Resumo:
In the context of aerial imagery, one of the first steps toward a coherent processing of the information contained in multiple images is geo-registration, which consists in assigning geographic 3D coordinates to the pixels of the image. This enables accurate alignment and geo-positioning of multiple images, detection of moving objects and fusion of data acquired from multiple sensors. To solve this problem there are different approaches that require, in addition to a precise characterization of the camera sensor, high resolution referenced images or terrain elevation models, which are usually not publicly available or out of date. Building upon the idea of developing technology that does not need a reference terrain elevation model, we propose a geo-registration technique that applies variational methods to obtain a dense and coherent surface elevation model that is used to replace the reference model. The surface elevation model is built by interpolation of scattered 3D points, which are obtained in a two-step process following a classical stereo pipeline: first, coherent disparity maps between image pairs of a video sequence are estimated and then image point correspondences are back-projected. The proposed variational method enforces continuity of the disparity map not only along epipolar lines (as done by previous geo-registration techniques) but also across them, in the full 2D image domain. In the experiments, aerial images from synthetic video sequences have been used to validate the proposed technique.
Resumo:
Esta tesis presenta un novedoso marco de referencia para el análisis y optimización del retardo de codificación y descodificación para vídeo multivista. El objetivo de este marco de referencia es proporcionar una metodología sistemática para el análisis del retardo en codificadores y descodificadores multivista y herramientas útiles en el diseño de codificadores/descodificadores para aplicaciones con requisitos de bajo retardo. El marco de referencia propuesto caracteriza primero los elementos que tienen influencia en el comportamiento del retardo: i) la estructura de predicción multivista, ii) el modelo hardware del codificador/descodificador y iii) los tiempos de proceso de cuadro. En segundo lugar, proporciona algoritmos para el cálculo del retardo de codificación/ descodificación de cualquier estructura arbitraria de predicción multivista. El núcleo de este marco de referencia consiste en una metodología para el análisis del retardo de codificación/descodificación multivista que es independiente de la arquitectura hardware del codificador/descodificador, completada con un conjunto de modelos que particularizan este análisis del retardo con las características de la arquitectura hardware del codificador/descodificador. Entre estos modelos, aquellos basados en teoría de grafos adquieren especial relevancia debido a su capacidad de desacoplar la influencia de los diferentes elementos en el comportamiento del retardo en el codificador/ descodificador, mediante una abstracción de su capacidad de proceso. Para revelar las posibles aplicaciones de este marco de referencia, esta tesis presenta algunos ejemplos de su utilización en problemas de diseño que afectan a codificadores y descodificadores multivista. Este escenario de aplicación cubre los siguientes casos: estrategias para el diseño de estructuras de predicción que tengan en consideración requisitos de retardo además del comportamiento tasa-distorsión; diseño del número de procesadores y análisis de los requisitos de velocidad de proceso en codificadores/ descodificadores multivista dado un retardo objetivo; y el análisis comparativo del comportamiento del retardo en codificadores multivista con diferentes capacidades de proceso e implementaciones hardware. ABSTRACT This thesis presents a novel framework for the analysis and optimization of the encoding and decoding delay for multiview video. The objective of this framework is to provide a systematic methodology for the analysis of the delay in multiview encoders and decoders and useful tools in the design of multiview encoders/decoders for applications with low delay requirements. The proposed framework characterizes firstly the elements that have an influence in the delay performance: i) the multiview prediction structure ii) the hardware model of the encoder/decoder and iii) frame processing times. Secondly, it provides algorithms for the computation of the encoding/decoding delay of any arbitrary multiview prediction structure. The core of this framework consists in a methodology for the analysis of the multiview encoding/decoding delay that is independent of the hardware architecture of the encoder/decoder, which is completed with a set of models that particularize this delay analysis with the characteristics of the hardware architecture of the encoder/decoder. Among these models, the ones based in graph theory acquire special relevance due to their capacity to detach the influence of the different elements in the delay performance of the encoder/decoder, by means of an abstraction of its processing capacity. To reveal possible applications of this framework, this thesis presents some examples of its utilization in design problems that affect multiview encoders and decoders. This application scenario covers the following cases: strategies for the design of prediction structures that take into consideration delay requirements in addition to the rate-distortion performance; design of number of processors and analysis of processor speed requirements in multiview encoders/decoders given a target delay; and comparative analysis of the encoding delay performance of multiview encoders with different processing capabilities and hardware implementations.
Resumo:
We present an adaptive unequal error protection (UEP) strategy built on the 1-D interleaved parity Application Layer Forward Error Correction (AL-FEC) code for protecting the transmission of stereoscopic 3D video content encoded with Multiview Video Coding (MVC) through IP-based networks. Our scheme targets the minimization of quality degradation produced by packet losses during video transmission in time-sensitive application scenarios. To that end, based on a novel packet-level distortion model, it selects in real time the most suitable packets within each Group of Pictures (GOP) to be protected and the most convenient FEC technique parameters, i.e., the size of the FEC generator matrix. In order to make these decisions, it considers the relevance of the packet, the behavior of the channel, and the available bitrate for protection purposes. Simulation results validate both the distortion model introduced to estimate the importance of packets and the optimization of the FEC technique parameter values.
Resumo:
We present a novel framework for the analysis and optimization of encoding latency for multiview video. Firstly, we characterize the elements that have an influence in the encoding latency performance: (i) the multiview prediction structure and (ii) the hardware encoder model. Then, we provide algorithms to find the encoding latency of any arbitrary multiview prediction structure. The proposed framework relies on the directed acyclic graph encoder latency (DAGEL) model, which provides an abstraction of the processing capacity of the encoder by considering an unbounded number of processors. Using graph theoretic algorithms, the DAGEL model allows us to compute the encoding latency of a given prediction structure, and determine the contribution of the prediction dependencies to it. As an example of DAGEL application, we propose an algorithm to reduce the encoding latency of a given multiview prediction structure up to a target value. In our approach, a minimum number of frame dependencies are pruned, until the latency target value is achieved, thus minimizing the degradation of the rate-distortion performance due to the removal of the prediction dependencies. Finally, we analyze the latency performance of the DAGEL derived prediction structures in multiview encoders with limited processing capacity.
Resumo:
Shading reduces the power output of a photovoltaic (PV) system. The design engineering of PV systems requires modeling and evaluating shading losses. Some PV systems are affected by complex shading scenes whose resulting PV energy losses are very difficult to evaluate with current modeling tools. Several specialized PV design and simulation software include the possibility to evaluate shading losses. They generally possess a Graphical User Interface (GUI) through which the user can draw a 3D shading scene, and then evaluate its corresponding PV energy losses. The complexity of the objects that these tools can handle is relatively limited. We have created a software solution, 3DPV, which allows evaluating the energy losses induced by complex 3D scenes on PV generators. The 3D objects can be imported from specialized 3D modeling software or from a 3D object library. The shadows cast by this 3D scene on the PV generator are then directly evaluated from the Graphics Processing Unit (GPU). Thanks to the recent development of GPUs for the video game industry, the shadows can be evaluated with a very high spatial resolution that reaches well beyond the PV cell level, in very short calculation times. A PV simulation model then translates the geometrical shading into PV energy output losses. 3DPV has been implemented using WebGL, which allows it to run directly from a Web browser, without requiring any local installation from the user. This also allows taken full benefits from the information already available from Internet, such as the 3D object libraries. This contribution describes, step by step, the method that allows 3DPV to evaluate the PV energy losses caused by complex shading. We then illustrate the results of this methodology to several application cases that are encountered in the world of PV systems design. Keywords: 3D, modeling, simulation, GPU, shading, losses, shadow mapping, solar, photovoltaic, PV, WebGL
Resumo:
We present a framework for the analysis of the decoding delay in multiview video coding (MVC). We show that in real-time applications, an accurate estimation of the decoding delay is essential to achieve a minimum communication latency. As opposed to single-view codecs, the complexity of the multiview prediction structure and the parallel decoding of several views requires a systematic analysis of this decoding delay, which we solve using graph theory and a model of the decoder hardware architecture. Our framework assumes a decoder implementation in general purpose multi-core processors with multi-threading capabilities. For this hardware model, we show that frame processing times depend on the computational load of the decoder and we provide an iterative algorithm to compute jointly frame processing times and decoding delay. Finally, we show that decoding delay analysis can be applied to design decoders with the objective of minimizing the communication latency of the MVC system.
Resumo:
Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.
Resumo:
Vision-based object detection from a moving platform becomes particularly challenging in the field of advanced driver assistance systems (ADAS). In this context, onboard vision-based vehicle verification strategies become critical, facing challenges derived from the variability of vehicles appearance, illumination, and vehicle speed. In this paper, an optimized HOG configuration for onboard vehicle verification is proposed which not only considers its spatial and orientation resolution, but descriptor processing strategies and classification. An in-depth analysis of the optimal settings for HOG for onboard vehicle verification is presented, in the context of SVM classification with different kernels. In contrast to many existing approaches, the evaluation is realized in a public and heterogeneous database of vehicle and non-vehicle images in different areas of the road, rendering excellent verification rates that outperform other similar approaches in the literature.