798 resultados para VEGF


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The global prevalence of pathologic myopia is 0.9-3.1%, and visual impairment is found in 0.1-0.5% of European and 0.2-1.4% of Asian studies. Myopic choroidal neovascularization (mCNV) affects 5.2-11.3% of pathologic myopia patients and is a leading cause of vision impairment in the working-age population. Characteristic morphological changes and visual-acuity decrease are diagnostic features. Vascular-Endothelial-Growth-Factor (VEGF) has been identified as a trigger for pathologic neovascularization in these highly myopic patients. Areas Covered We cover the epidemiology, pathology and diagnostic aspects of mCNV. The history of therapeutic interventions is described, followed by an overview of current standard-of-care (SOC)-blocking VEGF using bevacizumab (off-label), ranibizumab or aflibercept and improving vision up to 13.5-14.4 letters. Despite good efficacy, an unmet medical need remains. We summarize ongoing and future developments of new drugs to treat or potentially cure mCNV. Expert Opinion mCNV is a major global health concern. Early detection and treatment is key for a satisfying outcome. The current SOC, VEGF inhibitors, affords good therapeutic efficacy and reasonable disease stabilization with few intravitreal treatments per year. However, the long-term prognosis is still unsatisfactory, and side-effects like chorioretinal atrophy development are of concern. Therefore, efforts should be intensified to develop more effective therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Tissue engineering techniques offer a potential means to develop a tissue engineered construct (TEC) for the treatment of tissue and organ deficiencies. However, a lack of adequate vascularization is a limiting factor in the development of most viable engineered tissues. Vascular endothelial growth factor (VEGF) could aid in the development of a viable vascular network within TECs. The long-term goals of this research are to develop clinically relevant, appropriately vascularized TECs for use in humans. This project tested the hypothesis that the delivery of VEGF via controlled release from biodegradable microspheres would increase the vascular density and rate of angiogenesis within a model TEC. ^ Materials and methods. Biodegradable VEGF-encapsulated microspheres were manufactured using a novel method entitled the Solid Encapsulation/Single Emulsion/Solvent Extraction technique. Using a PLGA/PEG polymer blend, microspheres were manufactured and characterized in vitro. A model TEC using fibrin was designed for in vivo tissue engineering experimentation. At the appropriate timepoint, the TECs were explanted, and stained and quantified for CD31 using a novel semi-automated thresholding technique. ^ Results. In vitro results show the microspheres could be manufactured, stored, degrade, and release biologically active VEGF. The in vivo investigations revealed that skeletal muscle was the optimal implantation site as compared to dermis. In addition, the TECs containing fibrin with VEGF demonstrated significantly more angiogenesis than the controls. The TECs containing VEGF microspheres displayed a significant increase in vascular density by day 10. Furthermore, TECs containing VEGF microspheres had a significantly increased relative rate of angiogenesis from implantation day 5 to day 10. ^ Conclusions. A novel technique for producing microspheres loaded with biologically active proteins was developed. A defined concentration of microspheres can deliver a quantifiable level of VEGF with known release kinetics. A novel model TEC for in vivo tissue engineering investigations was developed. VEGF and VEGF microspheres stimulate angiogenesis within the model TEC. This investigation determined that biodegradable rhVEGF 165-encapsulated microspheres increased the vascular density and relative rate of angiogenesis within a model TEC. Future applications could include the incorporation of microvascular fragments into the model TEC and the incorporation of specific tissues, such as fat or bone. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wound healing is a conserved survival response whose function is to restore the integrity of the tissue after physical trauma. Despite numerous studies in the wound healing field, the signals and pathways that orchestrate and control the wound healing program are still not entirely known. To identify additional signals and pathways that regulate epidermal wound repair in Drosophila larvae, we performed a pilot in vivo RNAi screen using a live reporter for epidermal morphology and a wounding assay. From our pilot screen we identified Pvr, the Drosophila homolog of the vertebrate PDGF/VEGF receptors, and six other genes as epidermal wound healing genes. Morphological analysis of wound-edge cells lacking Pvr or the Drosophila Jun N-terminal Kinase (JNK), previously implicated in larval wound closure, suggest that Pvr signaling leads to cell process extension into the wound site while JNK mediates transient dedifferentiation of wound-edge epidermal cells. Furthermore, we found that one of the three known Pvr ligands, Pvf1, is also required for epidermal wound closure. Through tissue-specific knock down and rescue experiments, we propose a model in which epidermally-produced Pvf1 may be sequestered into the hemolymph (blood) and that tissue damage locally exposes blood-borne Pvf1 to Pvr receptors on epidermal cells at the wound edge, thus initiating epidermal cell process extension and migration into the wound gap. Together, our data suggest that the Pvr and JNK signaling pathways act in parallel to control different aspects of wound closure and that PDGF/VEGF ligands and receptors may have a conserved autocrine role in epidermal wound closure. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ErbB2 overexpression in breast tumors increases metastasis, angiogenesis, and reduces survival. To study ErbB2 signaling mechanisms in metastasis and angiogenesis, a spontaneous metastasis assay was performed using human breast cancer cells transfected with constitutively active ErbB2 kinase (V659E), an ErbB2 kinase-dead mutant (K753M), or vector control. Mice injected with V659E had increased metastasis and tumor microvessel density; and the increased angiogenesis in vivo from the V659E transfectants paralleled increased angiogenic potential in vitro, which resulted from increased VEGF by increased protein synthesis. This appeared to be mediated through a PI3K, Akt, mTOR, p70S6K-signaling pathway. Furthermore, V659E xenografts had significantly increased phosphorylated Akt, phosphorylated p70S6K, and VEGF compared with control. To validate the clinical relevance of these findings, human breast tumor samples were examined. Tumors overexpressing ErbB2 correlated with p70S6K phosphorylation and VEGF expression, which significantly correlated with higher levels of Akt and mTOR phosphorylation. Additionally, patients with tumors having increased p70S6K phosphorylation showed a trend for worse disease-free survival and increased metastasis. Together, ErbB2 increases VEGF expression by activating the p70S6K signaling pathway, which may serve as targets for antiangiogenic and antimetastatic therapies. ^ Herceptin is an anti-ErbB2 antibody that demonstrated anti-tumor function, especially in combination with other chemotherapies such as Taxol, in patients with ErbB2-overexpressing tumors. Since the repeated administration of low-dose chemotherapy endorsed an antiangiogenic effect in vitro, and Herceptin was shown to inhibit angiogenesis in tumor xenografts, I investigated whether combined Taxol plus Herceptin treatment inhibits ErbB2-mediated angiogenic responses more effectively. Mice with ErbB2-overexpressing xenografts were treated with control, Herceptin, Taxol, or combination Herceptin plus Taxol. Mice treated with the combination exhibited reduced tumor volumes, tumor microvessel densities, and lung metastasis; and ErbB2-overexpressing cells treated with the combination secreted less VEGF, and stimulated less endothelial cell migration. Furthermore, Akt phosphorylation contributed to VEGF upregulation and was most effectively reduced by combination treatment. ^ In summary, ErbB2 activates signaling to Akt and p70S6K leading to increased VEGF and angiogenesis. Combination Herceptin plus Taxol treatment most effectively inhibited ErbB2-mediated angiogenesis, resulting in pronounced tumoricidal effects, and may be mediated through reduction of phosphorylated Akt, a positive regulator in the p70S6K pathway. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia is a prominent feature of malignant tumors that are characterized by angiogenesis and vascular hyperpermeability. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) has been shown to be up-regulated in the vicinity of necrotic tumor areas, and hypoxia potently induces VPF/VEGF expression in several tumor cell lines in vitro. Here we report that hypoxia-induced VPF/VEGF expression is mediated by increased transcription and mRNA stability in human M21 melanoma cells. RNA-binding/electrophoretic mobility shift assays identified a single 125-bp AU-rich element in the 3′ untranslated region that formed hypoxia-inducible RNA-protein complexes. Hypoxia-induced expression of chimeric luciferase reporter constructs containing this 125-bp AU-rich hypoxia stability region were significantly higher than constructs containing an adjacent 3′ untranslated region element without RNA-binding activity. Using UV-cross-linking studies, we have identified a series of hypoxia-induced proteins of 90/88 kDa, 72 kDa, 60 kDa, 56 kDa, and 46 kDa that bound to the hypoxia stability region element. The 90/88-kDa and 60-kDa species were specifically competed by excess hypoxia stability region RNA. Thus, increased VPF/VEGF mRNA stability induced by hypoxia is mediated, at least in part, by specific interactions between a defined mRNA stability sequence in the 3′ untranslated region and distinct mRNA-binding proteins in human tumor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mast cells have been implicated in various diseases that are accompanied by neovascularization. The exact mechanisms by which mast cells might mediate an angiogenic response, however, are unclear and therefore, we have investigated the possible expression of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in the human mast cell line HMC-1 and in human skin mast cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that mast cells constitutively express VEGF121, VEGF165, and VEGF189. After a prolonged stimulation of cells for 24 h with phorbol 12-myristate 13-acetate (PMA) and the ionophore A23187, an additional transcript representing VEGF206 was detectable, as could be verified by sequence analysis. These results were confirmed at the protein level by Western blot analysis. When the amounts of VEGF released under unstimulated and stimulated conditions were compared, a significant increase was detectable after stimulation of cells. Human microvascular endothelial cells (HMVEC) responded to the supernatant of unstimulated HMC-1 cells with a dose-dependent mitogenic effect, neutralizable up to 90% in the presence of a VEGF-specific monoclonal antibody. Flow cytometry and postembedding immunoelectron microscopy were used to detect VEGF in its cell-associated form. VEGF was exclusively detectable in the secretory granules of isolated human skin mast cells. These results show that both normal and leukemic human mast cells constitutively express bioactive VEGF. Furthermore, this study contributes to the understanding of the physiological role of the strongly heparin-binding VEGF isoforms, since these were found for the first time to be expressed in an activation-dependent manner in HMC-1 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) mediates angiogenic activity in a variety of estrogen target tissues. To determine whether estrogen has a direct transcriptional effect on VEGF gene expression, we developed a model system by transiently transfecting human VEGF promoter-luciferase reporter constructs into primary human endometrial cells and into Ishikawa cells, derived from a well-differentiated human endometrial adenocarcinoma. In primary endometrial epithelial cells, treatment with 17β-estradiol (E2) resulted in a 3.8-fold increase in luciferase activity, whereas a 3.2-fold induction was demonstrated for stromal cells. Our Ishikawa cells had less than 100 functional estrogen receptors (ER)/cell and were therefore cotransfected with expression vectors encoding either the α- or the β-form of the human ER. In cells cotransfected with ERα, E2 induced 3.2-fold induction in VEGF-promoter luciferase activity. A 2.3-fold increase was observed in cells cotransfected with ERβ. Through specific deletions, the E2 response was restricted to a single 385-bp PvuII-SstI fragment in the 5′ flanking DNA. Cotransfection of this upstream region with a DNA binding domain ER mutant, or site-directed mutagenesis of a variant ERE within this fragment, resulted in the loss of the E2 response. Electromobility shift assays demonstrated that this same ERE sequence specifically binds estradiol-ER complexes. These studies demonstrate that E2-regulated VEGF gene transcription requires a variant ERE located 1.5 kb upstream from the transcriptional start site. Site-directed mutagenesis of this ERE abrogated E2-induced VEGF gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinopathy of prematurity is a blinding disease, initiated by lack of retinal vascular growth after premature birth. We show that lack of insulin-like growth factor I (IGF-I) in knockout mice prevents normal retinal vascular growth, despite the presence of vascular endothelial growth factor, important to vessel development. In vitro, low levels of IGF-I prevent vascular endothelial growth factor-induced activation of protein kinase B (Akt), a kinase critical for endothelial cell survival. Our results from studies in premature infants suggest that if the IGF-I level is sufficient after birth, normal vessel development occurs and retinopathy of prematurity does not develop. When IGF-I is persistently low, vessels cease to grow, maturing avascular retina becomes hypoxic and vascular endothelial growth factor accumulates in the vitreous. As IGF-I increases to a critical level, retinal neovascularization is triggered. These data indicate that serum IGF-I levels in premature infants can predict which infants will develop retinopathy of prematurity and further suggests that early restoration of IGF-I in premature infants to normal levels could prevent this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most endocrine hormones are produced in tissues and organs with permeable microvessels that may provide an excess of hormones to be transported by the blood circulation to the distal target organ. Here, we investigate whether leptin, an endocrine hormone, induces the formation of vascular fenestrations and permeability, and we characterize its angiogenic property in the presence of other angiogenic factors. We provide evidence that leptin-induced new blood vessels are fenestrated. Under physiological conditions, capillary fenestrations are found in the leptin-producing adipose tissue in lean mice. In contrast, no vascular fenestrations were detected in the adipose tissue of leptin-deficient ob/ob mice. Thus, leptin plays a critical role in the maintenance and regulation of vascular fenestrations in the adipose tissue. Leptin induces a rapid vascular permeability response when administrated intradermally. Further, leptin synergistically stimulates angiogenesis with fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF), the two most potent and commonly expressed angiogenic factors. These findings demonstrate that leptin has another new function—the increase of vascular permeability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a potent endothelial cell mitogen and key regulator of both physiologic and pathologic (e.g., tumor) angiogenesis. In the course of studies designed to assess the ability of constitutive VEGF to block tumor regression in an inducible RAS melanoma model, mice implanted with VEGF-expressing tumors sustained high morbidity and mortality that were out of proportion to the tumor burden. Documented elevated serum levels of VEGF were associated with a lethal hepatic syndrome characterized by massive sinusoidal dilation and endothelial cell proliferation and apoptosis. Systemic levels of VEGF correlated with the severity of liver pathology and overall clinical compromise. A striking reversal of VEGF-induced liver pathology and prolonged survival were achieved by surgical excision of VEGF-secreting tumor or by systemic administration of a potent VEGF antagonist (VEGF-TRAPR1R2), thus defining a paraneoplastic syndrome caused by excessive VEGF activity. Moreover, this VEGF-induced syndrome resembles peliosis hepatis, a rare human condition that is encountered in the setting of advanced malignancies, high-dose androgen therapy, and Bartonella henselae infection. Thus, our findings in the mouse have suggested an etiologic role for VEGF in this disease and may lead to diagnostic and therapeutic options for this debilitating condition in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P < 0.006) or hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-microns section averaged 47% +/- 4% (P < 0.001) and 37% +/- 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66%, respectively. No retinal toxicity was observed by light microscopy. These data demonstrate VEGF's causal role in retinal angiogenesis and prove the potential of VEGF inhibition as a specific therapy for ischemic retinal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To evaluate macular retinal ganglion cell thickness in patients with neovascular age-related macular degeneration (AMD) and intravitreal anti-vascular endothelial growth factor (VEGF) therapy. DESIGN Retrospective case series with fellow-eye comparison METHODS: Patients with continuous unilateral anti-VEGF treatment for sub- and juxtafoveal neovascular AMD and a minimum follow-up of 24 months were included. The retinal nerve fiber (RNFL) and retinal ganglion cell layer (RGCL) in the macula were segmented using an ETDRS grid. RNFL and RGCL thickness of the outer ring of the ETDRS grid were quantified at baseline and after repeated anti-VEGF injections, and compared to the patients' untreated fellow eye. Furthermore, best-corrected visual acuity (BCVA), age, and retinal pigment epithelium (RPE) atrophy were recorded and correlated with RNFL and RGCL. RESULTS Sixty eight eyes of 34 patients (23 female and 11 male; mean age 76.7 (SD±8.2) with a mean number of 31.5 (SD ±9.8) anti-VEGF injections and a mean follow-up period of 45.3 months (SD±10.5) were included. Whereas the RGCL thickness decreased significantly compared to the non-injected fellow eye (p=0.01) the decrease of the RNFL was not significant. Visual acuity gain was significantly correlated with RGCL thickness (r=0.52, p<0.05) at follow-up and negatively correlated (r=-0.41, p<0.05) with age. Presence of RPE atrophy correlated negatively with the RGCL thickness at follow-up (r= -0.37, p=0.03). CONCLUSION During the course of long term anti-VEGF therapy there is a significant decrease of the RGCL in patients with neovascular AMD to the fellow (untreated) eye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To identify the prevalence and progression of macular atrophy (MA) in neovascular age-related macular degeneration (AMD) patients under long-term anti-vascular endothelial growth factor (VEGF) therapy and to determine risk factors. METHOD This retrospective study included patients with neovascular AMD and ≥30 anti-VEGF injections. Macular atrophy (MA) was measured using near infrared and spectral-domain optical coherence tomography (SD-OCT). Yearly growth rate was estimated using square-root transformation to adjust for baseline area and allow for linearization of growth rate. Multiple regression with Akaike information criterion (AIC) as model selection criterion was used to estimate the influence of various parameters on MA area. RESULTS Forty-nine eyes (47 patients, mean age 77 ± 14) were included with a mean of 48 ± 13 intravitreal anti-VEGF injections (ranibizumab:37 ± 11, aflibercept:11 ± 6, mean number of injections/year 8 ± 2.1) over a mean treatment period of 6.2 ± 1.3 years (range 4-8.5). Mean best-corrected visual acuity improved from 57 ± 17 letters at baseline (= treatment start) to 60 ± 16 letters at last follow-up. The MA prevalence within and outside the choroidal neovascularization (CNV) border at initial measurement was 45% and increased to 74%. Mean MA area increased from 1.8 ± 2.7 mm(2) within and 0.5 ± 0.98 mm(2) outside the CNV boundary to 2.7 ± 3.4 mm(2) and 1.7 ± 1.8 mm(2) , respectively. Multivariate regression determined posterior vitreous detachment (PVD) and presence/development of intraretinal cysts (IRCs) as significant factors for total MA size (R(2) = 0.16, p = 0.02). Macular atrophy (MA) area outside the CNV border was best explained by the presence of reticular pseudodrusen (RPD) and IRC (R(2) = 0.24, p = 0.02). CONCLUSION A majority of patients show MA after long-term anti-VEGF treatment. Reticular pseudodrusen (RPD), IRC and PVD but not number of injections or treatment duration seem to be associated with the MA size.