992 resultados para VARIABLE SAMPLING INTERVAL
Resumo:
IBAMar (http://www.ba.ieo.es/ibamar) is a regional database that puts together all physical and biochemical data obtained by multiparametric probes (CTDs equipped with different sensors), during the cruises managed by the Balearic Center of the Spanish Institute of Oceanography (COB-IEO). It has been recently extended to include data obtained with classical hydro casts using oceanographic Niskin or Nansen bottles. The result is a database that includes a main core of hydrographic data: temperature (T), salinity (S), dissolved oxygen (DO), fluorescence and turbidity; complemented by bio-chemical data: dissolved inorganic nutrients (phosphate, nitrate, nitrite and silicate) and chlorophyll-a. In IBAMar Database, different technologies and methodologies were used by different teams along the four decades of data sampling in the COB-IEO. Despite of this fact, data have been reprocessed using the same protocols, and a standard QC has been applied to each variable. Therefore it provides a regional database of homogeneous, good quality data. Data acquisition and quality control (QC): 94% of the data are CTDs Sbe911 and Sbe25. S and DO were calibrated on board using water samples, whenever a Rossetta was available (70% of the cases). All CTD data from Seabird CTDs were reviewed and post processed with the software provided by Sea-Bird Electronics. Data were averaged to get 1 dbar vertical resolution. General sampling methodology and pre processing are described in https://ibamardatabase.wordpress.com/home/). Manual QC include visual checks of metadata, duplicate data and outliers. Automatic QC include range check of variables by area (north of Balearic Islands, south of BI and Alboran Sea) and depth (27 standard levels), check for spikes and check for density inversions. Nutrients QC includes a preliminary control and a range check on the observed level of the data to detect outliers around objectively analyzed data fields. A quality flag is assigned as an integer number, depending on the result of the QC check.
Resumo:
Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying "outlier" shoreline positions. On top of natural beach variability observed along the reweighted beach sections, we found that one third of the analyzed islands show a statistically significant decrease in reweighted beach width since 1943. The total loss of beach area for all islands corresponds to 44% of the initial beach area. Variable shoreline trajectories suggest that changes in beach width on Takú Atoll are dependent on local control (that is, human activity and longshore sediment transport). Our results show that remote imagery with a low sampling frequency may be sufficient to characterize prominent morphological changes in planform beach configuration of reef islands.
Resumo:
In a study of ODP Hole 689B no iridium (Ir) anomaly was found in Sections 1 through 6 of Core 25X or in Core 26X from the top down to section 2, 3-12 cm. The background Ir abundance averaged 11 parts per trillion (ppt) and a clay-enriched region had nearly the same average, 26 ± 12 ppt. If the Cretaceous-Tertiary (K-T) contact is in the region studied, then sedimentation was not continuous, and the K-T boundary was probably either not deposited or it was eroded away. In a study of Cores 15X and 16X of ODP Hole 690C, an iridium peak with a maximum abundance of 1566 ± 222 ppt was found in Section 4 of Core 15X at 39-40 cm with a half-width of 6.6 cm. Background abundances were ~15 ppt and distinctly higher Ir abundances were observed from 119 cm below to 72 cm above the main peak. The Ir distribution below the main peak is attributed to bioturbation by organisms with burrows extending at least 0.4 m. The Ir distribution above the main peak may be due to the same cause but other explanations may be significant. There are variable enrichments of clay in the mainly CaCO3 sediment of Core 15X, and the stratigraphically lowest part of the most abundant clay deposits is found (within 2 cm) in the same position as the main Ir peak. The clay deposit, which is estimated to be about 50% of the sediment, extends upward ~19 cm and then slowly decreases to a background level of 10% over 1 m. The degree of homogeneity of the clay-rich interval suggests it was not due to episodic volcanism but may have been due to a decrease of the CaCO3 deposition rate which was possibly triggered by the impact of a large asteroid or comet on the Earth.
Resumo:
A late Quaternary pollen record from northern Sakhalin Island (51.34°N, 142.14°E, 15 m a.s.l.) spanning the last 43.7 ka was used to reconstruct regional climate dynamics and vegetation distribution by using the modern analogue technique (MAT). The long-term trends of the reconstructed mean annual temperature (TANN) and precipitation (PANN), and total tree cover are generally in line with key palaeoclimate records from the North Atlantic region and the Asian monsoon domain. TANN largely follows the fluctuations in solar summer insolation at 55°N. During Marine Isotope Stage (MIS) 3, TANN and PANN were on average 0.2 °C and 700 mm, respectively, thus very similar to late Holocene/modern conditions. Full glacial climate deterioration (TANN = -3.3 °C, PANN = 550 mm) was relatively weak as suggested by the MAT-inferred average climate parameters and tree cover densities. However, error ranges of the climate reconstructions during this interval are relatively large and the last glacial environments in northern Sakhalin could be much colder and drier than suggested by the weighted average values. An anti-phase relationship between mean temperature of the coldest (MTCO) and warmest (MTWA) month is documented during the last glacial period, i.e. MIS 2 and 3, suggesting more continental climate due to sea levels that were lower than present. Warmest and wettest climate conditions have prevailed since the end of the last glaciation with an optimum (TANN = 1.5 °C, PANN = 800 mm) in the middle Holocene interval (ca 8.7-5.2 cal. ka BP). This lags behind the solar insolation peak during the early Holocene. We propose that this is due to continuous Holocene sea level transgression and regional influence of the Tsushima Warm Current, which reached maximum intensity during the middle Holocene. Several short-term climate oscillations are suggested by our reconstruction results and correspond to Northern Hemisphere Heinrich and Dansgaard-Oeschger events, the Bølling-Allerød and the Younger Dryas. The most prominent fluctuation is registered during Heinrich 4 event, which is marked by noticeably colder and drier conditions and the spread of herbaceous taxa.
Resumo:
To deliver sample estimates provided with the necessary probability foundation to permit generalization from the sample data subset to the whole target population being sampled, probability sampling strategies are required to satisfy three necessary not sufficient conditions: (i) All inclusion probabilities be greater than zero in the target population to be sampled. If some sampling units have an inclusion probability of zero, then a map accuracy assessment does not represent the entire target region depicted in the map to be assessed. (ii) The inclusion probabilities must be: (a) knowable for nonsampled units and (b) known for those units selected in the sample: since the inclusion probability determines the weight attached to each sampling unit in the accuracy estimation formulas, if the inclusion probabilities are unknown, so are the estimation weights. This original work presents a novel (to the best of these authors' knowledge, the first) probability sampling protocol for quality assessment and comparison of thematic maps generated from spaceborne/airborne Very High Resolution (VHR) images, where: (I) an original Categorical Variable Pair Similarity Index (CVPSI, proposed in two different formulations) is estimated as a fuzzy degree of match between a reference and a test semantic vocabulary, which may not coincide, and (II) both symbolic pixel-based thematic quality indicators (TQIs) and sub-symbolic object-based spatial quality indicators (SQIs) are estimated with a degree of uncertainty in measurement in compliance with the well-known Quality Assurance Framework for Earth Observation (QA4EO) guidelines. Like a decision-tree, any protocol (guidelines for best practice) comprises a set of rules, equivalent to structural knowledge, and an order of presentation of the rule set, known as procedural knowledge. The combination of these two levels of knowledge makes an original protocol worth more than the sum of its parts. The several degrees of novelty of the proposed probability sampling protocol are highlighted in this paper, at the levels of understanding of both structural and procedural knowledge, in comparison with related multi-disciplinary works selected from the existing literature. In the experimental session the proposed protocol is tested for accuracy validation of preliminary classification maps automatically generated by the Satellite Image Automatic MapperT (SIAMT) software product from two WorldView-2 images and one QuickBird-2 image provided by DigitalGlobe for testing purposes. In these experiments, collected TQIs and SQIs are statistically valid, statistically significant, consistent across maps and in agreement with theoretical expectations, visual (qualitative) evidence and quantitative quality indexes of operativeness (OQIs) claimed for SIAMT by related papers. As a subsidiary conclusion, the statistically consistent and statistically significant accuracy validation of the SIAMT pre-classification maps proposed in this contribution, together with OQIs claimed for SIAMT by related works, make the operational (automatic, accurate, near real-time, robust, scalable) SIAMT software product eligible for opening up new inter-disciplinary research and market opportunities in accordance with the visionary goal of the Global Earth Observation System of Systems (GEOSS) initiative and the QA4EO international guidelines.
Resumo:
The Ocean Drilling Program Leg 175 recovered a unique series of stratigraphically continuous sedimentary sections along the SW African margin, an area which is presently affected by active coastal upwelling. The accumulation rates of organic and inorganic carbon are a major component of this record. Four Leg 175 sites (1082, 1084, 1085, 1087) are chosen as part of a latitudinal transect from the present northern to southern boundaries of the Benguela Current upwelling system, to decipher the Pliocene-Pleistocene history of biogenic production and its relationship with global and local changes in oceanic circulation and climate. The pattern of CaCO3 and Corg mass accumulation rates (MARs) over 0.25-Myr intervals indicates that the evolution of carbon burial is highly variable between the northern and the southern Benguela regions, as well as between sites that have similar hydrological conditions. This, as well as the presence over most locations of high-amplitude, rapid changes of carbon burial, reflect the partitioning of biogenic production and patterns of sedimentation into local compartments over the Benguela margin. The combined mapping of CaCO3 and Corg MARs at the study locations suggests four distinct evolutionary periods, which are essentially linked with major steps in global climate change: the early Pliocene, the mid-Pliocene warm event, a late Pliocene intensification of northern hemisphere glaciation and the Pleistocene. The early Pliocene spatially heterogeneous patterns of carbon burial are thought to reflect the occurrence of mass-gravitational movements over the Benguela slope which resulted in disruption of the recorded biogenic production. This was followed (3.5-3 Ma) by an episode of peak carbonate accumulation over the whole margin and, subsequently, by the onset of Benguela provincialism into a northern and a southern sedimentary regime near 2 Ma. This mid and late Pliocene evolution is interpreted as a direct response to changes in the ventilation of bottom and intermediate waters, as well as to dynamics of the subtropical gyral circulation and associated wind stress.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements made with a WETLabs Eco-FL sensor mounted on the flowthrough system between June 4th, 2011 and March 30th, 2012. Data was recorded approximately every 10s. Two issues affected the data: 1. Periods when the water 0.2µm filtered water were used as blanks and 2. Periods where fluorescence was affected by non-photochemical quenching (NPQ, chlorophyll fluorescence is reduced when cells are exposed to light, e.g. Falkowski and Raven, 1997). Median data and their standard deviation were binned to 5min bins with period of light/dark indicated by an added variable (so that NPQ affected data could be neglected if the user so chooses). Data was first calibrated using HPLC data collected on the Tara (there were 36 data within 30min of each other). Fewer were available when there was no evident NPQ and the resulting scale factor was 0.0106 mg Chl m-3/count. To increase the calibration match-ups we used the AC-S data which provided a robust estimate of Chlorophyll (e.g. Boss et al., 2013). Scale factor computed over a much larger range of values than HPLC was 0.0088 mg Chl m-3/count (compared to 0.0079 mg Chl m-3/count based on manufacturer). In the archived data the fluorometer data is merged with the TSG, raw data is provided as well as manufacturer calibration constants, blank computed from filtered measurements and chlorophyll calibrated using the AC-S. For a full description of the processing of the Eco-FL please see Taillandier, 2015.