999 resultados para Universal Decimal Classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Classificação Internacional da Funcionalidade, Crianças e Jovens (CIF-CJ), usando uma linguagem comum e universal, permite a comunicação entre os diferentes profissionais e investigadores. Sustenta-se numa abordagem biopsicossocial que pressupõe um processo interactivo da participação com os contextos de vida da criança, classificando a criança quanto à sua funcionalidade, definindo perfis de funcionalidade. A reestruturação do Programa Educativo Individual (PEI) através do decreto-lei 3/2008, passa a incluir uma terminologia da CIF-CJ, para a determinação do Perfil de Funcionalidade e Plano de Intervenção. Devido à sua pertinência e actualidade foi objectivo deste estudo fazer a análise da aplicação da CIF nos Programas Educativos Individualizados das crianças da Creche e Jardim de Infância do Cabedelo, verificando se os conteúdos dos PEI das crianças tem ligação com as componentes da CIF-CJ, se são elaborados de modo a englobarem predominantemente os constructos ligados à Actividade e Participação e ao Ambiente segundo o modelo biopsicossocial, e se os constructos identificados no Perfil de Funcionalidade surgem como alvo no Plano de Intervenção. Seleccionámos uma amostra de 15 crianças com Necessidades Educativas Especiais (NEE) com idades entre os dois e os seis anos de idade. A metodologia foi mista iniciando com um estudo qualitativo seguido de uma metodologia quantitativa. Assim procedeu-se a uma análise de conteúdo dos PEI’s, utilizando as linking rules para os relacionar com a CIF-CJ, e posteriormente efectuou-se uma análise de frequências com recurso à estatística descritiva. Os resultados indicam existir uma ligação dos conteúdos dos PEI’s com os componentes da CIF-CJ. O Perfil de Funcionalidade e Plano de Intervenção centram-se na componente Actividades e Participação sendo os Factores do Ambiente menos citados em ambos os processos. Em relação à existência de correspondência dos constructos do Perfil de Funcionalidade com o Plano de Intervenção não há uma correspondência directa em grande parte dos códigos, havendo no entanto uma correspondência na mesma área ou em áreas diferentes mas relacionáveis entre si.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an integrated system for vehicle classification. This system aims to classify vehicles using different approaches: 1) based on the height of the first axle and_the number of axles; 2) based on volumetric measurements and; 3) based on features extracted from the captured image of the vehicle. The system uses a laser sensor for measurements and a set of image analysis algorithms to compute some visual features. By combining different classification methods, it is shown that the system improves its accuracy and robustness, enabling its usage in more difficult environments satisfying the proposed requirements established by the Portuguese motorway contractor BRISA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A CIF é um sistema de classificação adotado pela OMS, que serve de referência universal para descrever, avaliar e medir saúde e incapacidade, a nível individual e ao nível da população. Contudo, apesar do interesse internacional gerado em torno da CIF, esta é considerada uma classificação complexa e extensa, fato que despoletou a criação de core sets – listas de itens da CIF especificamente selecionados pela sua relevância na descrição e qualificação de uma determinada condição de saúde – como resposta a esta problemática. Até à data, foram desenvolvidos core sets para várias patologias comuns. Contudo, apesar do controlo motor ser uma área de investigação muito reconhecida nos últimos 20 anos, ainda não possui um core set próprio. Assim, o objetivo deste estudo é contribuir para o desenvolvimento de um core set, com base na CIF-CJ, dirigido para uma descrição abrangente das competências inerentes a crianças, dos 6 aos 18 anos de idade, com défices no controlo motor. Deste modo, recorreu-se a uma revisão da literatura sobre a temática em estudo, de modo a reunir informação para a construção de uma proposta a core set, posteriormente sujeita ao escrutínio de peritos, através do recurso ao método de Delphi. Após várias rondas, foi alcançado um consenso acerca da lista final de códigos CIF que constituem o core set final.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic liver disease (CLD) is most of the time an asymptomatic, progressive, and ultimately potentially fatal disease. In this study, an automatic hierarchical procedure to stage CLD using ultrasound images, laboratory tests, and clinical records are described. The first stage of the proposed method, called clinical based classifier (CBC), discriminates healthy from pathologic conditions. When nonhealthy conditions are detected, the method refines the results in three exclusive pathologies in a hierarchical basis: 1) chronic hepatitis; 2) compensated cirrhosis; and 3) decompensated cirrhosis. The features used as well as the classifiers (Bayes, Parzen, support vector machine, and k-nearest neighbor) are optimally selected for each stage. A large multimodal feature database was specifically built for this study containing 30 chronic hepatitis cases, 34 compensated cirrhosis cases, and 36 decompensated cirrhosis cases, all validated after histopathologic analysis by liver biopsy. The CBC classification scheme outperformed the nonhierachical one against all scheme, achieving an overall accuracy of 98.67% for the normal detector, 87.45% for the chronic hepatitis detector, and 95.71% for the cirrhosis detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A CIF é uma ferramenta universal desenvolvida pela OMS que permite a classificação de funcionalidade e incapacidade, através de uma visualização global do que condiciona o desempenho do indivíduo na concretização de atividades e na participação em ocupações. A ideologia da CIF e os seus componentes interrelacionam-se com a essência da TO, indo ao encontro dos modelos da profissão. As UCCI constituem uma atualidade em Portugal e o terapeuta ocupacional é um dos profissionais obrigatórios na equipa multidisciplinar destas unidades. Atendendo à relevância internacional da CIF, à sua ligação com a TO e à necessidade de tornar a CIF operacional na prática clínica diária dado que é uma ferramenta complexa e extensa, é objetivo deste estudo contribuir para a construção de um code set da CIF para terapeutas ocupacionais que exercem funções em UCCI, especificamente em UC, UMDR e ULDM. Para a concretização desta investigação, utilizou-se a técnica de Delphi, que envolveu duas rondas. Na primeira ronda foi possível contar com a participação de 37 terapeutas ocupacionais experientes na área, uma vez que exercem funções em UCCI, e na segunda ronda contou-se com a participação de 20 elementos. Obtiveram consenso na última ronda de Delphi um total de 96 categorias, constituindo esta listagem uma proposta de code set para UCCI. No que se refere às tipologias de unidades, 69 categorias obtiveram consenso em UC, 91 em UMDR e 41 em ULDM. Concluiu-se que a criação de code sets poderá constituir uma mais-valia em contexto de equipa multidisciplinar das UCCI, sendo uma forma de tornar a CIF operacional na prática clínica diária.