964 resultados para Uncertainty analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of spatial uncertainty in the prediction of nutrient losses by erosion associated with landscape models is an important tool for soil conservation planning. The purpose of this study was to evaluate the spatial and local uncertainty in predicting depletion rates of soil nutrients (P, K, Ca, and Mg) by soil erosion from green and burnt sugarcane harvesting scenarios, using sequential Gaussian simulation (SGS). A regular grid with equidistant intervals of 50 m (626 points) was established in the 200-ha study area, in Tabapuã, São Paulo, Brazil. The rate of soil depletion (SD) was calculated from the relation between the nutrient concentration in the sediments and the chemical properties in the original soil for all grid points. The data were subjected to descriptive statistical and geostatistical analysis. The mean SD rate for all nutrients was higher in the slash-and-burn than the green cane harvest scenario (Student’s t-test, p<0.05). In both scenarios, nutrient loss followed the order: Ca>Mg>K>P. The SD rate was highest in areas with greater slope. Lower uncertainties were associated to the areas with higher SD and steeper slopes. Spatial uncertainties were highest for areas of transition between concave and convex landforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper focuses on the analysis and discussion of a likelihood ratio (LR) development for propositions at a hierarchical level known in the context as 'offence level'. Existing literature on the topic has considered LR developments for so-called offender to scene transfer cases. These settings involve-in their simplest form-a single stain found on a crime scene, but with possible uncertainty about the degree to which that stain is relevant (i.e. that it has been left by the offender). Extensions to multiple stains or multiple offenders have also been reported. The purpose of this paper is to discuss a development of a LR for offence level propositions when case settings involve potential transfer in the opposite direction, i.e. victim/scene to offender transfer. This setting has previously not yet been considered. The rationale behind the proposed LR is illustrated through graphical probability models (i.e. Bayesian networks). The role of various uncertain parameters is investigated through sensitivity analyses as well as simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combination chemotherapy is widely accepted for patients with advanced gastric cancer, but uncertainty remains regarding the choice of the regimen. Objectives: To assess the effect of: Comparison 1) irinotecan versus non-irinotecancontaining regimens, comparison 2) docetaxel versus non-docetaxel-containing regimens, comparison 3) regimens including oral 5-FU prodrugs versus intravenous fluoropyrimidines, comparison 4) oxaliplatin versus cisplatin-containing regimens on overall survival. Search Strategy: We searched: Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, proceedings from ECCO, ESMO, ASCO until December 2009. Selection Criteria: Randomised controlled trials on the above mentioned chemotherapy regimens in advanced or metastatic denocarcinoma of the stomach or GE-junction. Results: The meta-analysis of overall survival for comparison 1) included 4 trials, 640 patients, and results in a HR of 0.86 (95% CI 0.73-1.02) in favour of the irinotecancontaining regimens. For comparison 2) 4 trials with a total of 924 patients have been included in the analysis of overall survival. The resulting HR is 0.93 (95% CI 0.79-1.09) in favour of the docetaxel-containing regimens, with moderate heterogeneity (I2 =7%). For comparison 3 and 4, one major relevant study (Cunningham 2008) could not be included in this meta-analysis after discussion because it included patients with squamous cell cancer of the esophagus as well. Thus, for comparison 3) one relevant study (Kang 2009; 316 patients) comparing capecitabine versus 5-FU in combination with cisplatin is eligible. The resulting HR is 0.85 (95%CI 0.65-1.11) in favour of the oral regimen. For comparison 4) two eligible trials were identified (Al Batran 2008, Popov 2008; 292 patients) with a resulting HR of 0.82 (95% CI 0.47-1.45) in favour of the oxaliplatin-based regimens. For three further trials data is incomplete at present. Conclusions: Chemotherapy combinations including irinotecan, oxaliplatin, docetaxel or oral 5-FU prodrugs are alternative treatment options to cisplatin/5-FU or cisplatin/ 5-FU/anthracycline-combinations, but do not provide significant advantages in overall survival. Supported by: KKS Halle, grant number [BMBF/FKZ 01GH01GH0105]. Disclosure: All authors have declared no conflicts of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is estimated that around 230 people die each year due to radon (222Rn) exposure in Switzerland. 222Rn occurs mainly in closed environments like buildings and originates primarily from the subjacent ground. Therefore it depends strongly on geology and shows substantial regional variations. Correct identification of these regional variations would lead to substantial reduction of 222Rn exposure of the population based on appropriate construction of new and mitigation of already existing buildings. Prediction of indoor 222Rn concentrations (IRC) and identification of 222Rn prone areas is however difficult since IRC depend on a variety of different variables like building characteristics, meteorology, geology and anthropogenic factors. The present work aims at the development of predictive models and the understanding of IRC in Switzerland, taking into account a maximum of information in order to minimize the prediction uncertainty. The predictive maps will be used as a decision-support tool for 222Rn risk management. The construction of these models is based on different data-driven statistical methods, in combination with geographical information systems (GIS). In a first phase we performed univariate analysis of IRC for different variables, namely the detector type, building category, foundation, year of construction, the average outdoor temperature during measurement, altitude and lithology. All variables showed significant associations to IRC. Buildings constructed after 1900 showed significantly lower IRC compared to earlier constructions. We observed a further drop of IRC after 1970. In addition to that, we found an association of IRC with altitude. With regard to lithology, we observed the lowest IRC in sedimentary rocks (excluding carbonates) and sediments and the highest IRC in the Jura carbonates and igneous rock. The IRC data was systematically analyzed for potential bias due to spatially unbalanced sampling of measurements. In order to facilitate the modeling and the interpretation of the influence of geology on IRC, we developed an algorithm based on k-medoids clustering which permits to define coherent geological classes in terms of IRC. We performed a soil gas 222Rn concentration (SRC) measurement campaign in order to determine the predictive power of SRC with respect to IRC. We found that the use of SRC is limited for IRC prediction. The second part of the project was dedicated to predictive mapping of IRC using models which take into account the multidimensionality of the process of 222Rn entry into buildings. We used kernel regression and ensemble regression tree for this purpose. We could explain up to 33% of the variance of the log transformed IRC all over Switzerland. This is a good performance compared to former attempts of IRC modeling in Switzerland. As predictor variables we considered geographical coordinates, altitude, outdoor temperature, building type, foundation, year of construction and detector type. Ensemble regression trees like random forests allow to determine the role of each IRC predictor in a multidimensional setting. We found spatial information like geology, altitude and coordinates to have stronger influences on IRC than building related variables like foundation type, building type and year of construction. Based on kernel estimation we developed an approach to determine the local probability of IRC to exceed 300 Bq/m3. In addition to that we developed a confidence index in order to provide an estimate of uncertainty of the map. All methods allow an easy creation of tailor-made maps for different building characteristics. Our work is an essential step towards a 222Rn risk assessment which accounts at the same time for different architectural situations as well as geological and geographical conditions. For the communication of 222Rn hazard to the population we recommend to make use of the probability map based on kernel estimation. The communication of 222Rn hazard could for example be implemented via a web interface where the users specify the characteristics and coordinates of their home in order to obtain the probability to be above a given IRC with a corresponding index of confidence. Taking into account the health effects of 222Rn, our results have the potential to substantially improve the estimation of the effective dose from 222Rn delivered to the Swiss population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Winter weather in Iowa is often unpredictable and can have an adverse impact on traffic flow. The Iowa Department of Transportation (Iowa DOT) attempts to lessen the impact of winter weather events on traffic speeds with various proactive maintenance operations. In order to assess the performance of these maintenance operations, it would be beneficial to develop a model for expected speed reduction based on weather variables and normal maintenance schedules. Such a model would allow the Iowa DOT to identify situations in which speed reductions were much greater than or less than would be expected for a given set of storm conditions, and make modifications to improve efficiency and effectiveness. The objective of this work was to predict speed changes relative to baseline speed under normal conditions, based on nominal maintenance schedules and winter weather covariates (snow type, temperature, and wind speed), as measured by roadside weather stations. This allows for an assessment of the impact of winter weather covariates on traffic speed changes, and estimation of the effect of regular maintenance passes. The researchers chose events from Adair County, Iowa and fit a linear model incorporating the covariates mentioned previously. A Bayesian analysis was conducted to estimate the values of the parameters of this model. Specifically, the analysis produces a distribution for the parameter value that represents the impact of maintenance on traffic speeds. The effect of maintenance is not a constant, but rather a value that the researchers have some uncertainty about and this distribution represents what they know about the effects of maintenance. Similarly, examinations of the distributions for the effects of winter weather covariates are possible. Plots of observed and expected traffic speed changes allow a visual assessment of the model fit. Future work involves expanding this model to incorporate many events at multiple locations. This would allow for assessment of the impact of winter weather maintenance across various situations, and eventually identify locations and times in which maintenance could be improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unlike the evaluation of single items of scientific evidence, the formal study and analysis of the jointevaluation of several distinct items of forensic evidence has to date received some punctual, ratherthan systematic, attention. Questions about the (i) relationships among a set of (usually unobservable)propositions and a set of (observable) items of scientific evidence, (ii) the joint probative valueof a collection of distinct items of evidence as well as (iii) the contribution of each individual itemwithin a given group of pieces of evidence still represent fundamental areas of research. To somedegree, this is remarkable since both, forensic science theory and practice, yet many daily inferencetasks, require the consideration of multiple items if not masses of evidence. A recurrent and particularcomplication that arises in such settings is that the application of probability theory, i.e. the referencemethod for reasoning under uncertainty, becomes increasingly demanding. The present paper takesthis as a starting point and discusses graphical probability models, i.e. Bayesian networks, as frameworkwithin which the joint evaluation of scientific evidence can be approached in some viable way.Based on a review of existing main contributions in this area, the article here aims at presentinginstances of real case studies from the author's institution in order to point out the usefulness andcapacities of Bayesian networks for the probabilistic assessment of the probative value of multipleand interrelated items of evidence. A main emphasis is placed on underlying general patterns of inference,their representation as well as their graphical probabilistic analysis. Attention is also drawnto inferential interactions, such as redundancy, synergy and directional change. These distinguish thejoint evaluation of evidence from assessments of isolated items of evidence. Together, these topicspresent aspects of interest to both, domain experts and recipients of expert information, because theyhave bearing on how multiple items of evidence are meaningfully and appropriately set into context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard practice of wave-height hazard analysis often pays little attention to the uncertainty of assessed return periods and occurrence probabilities. This fact favors the opinion that, when large events happen, the hazard assessment should change accordingly. However, uncertainty of the hazard estimates is normally able to hide the effect of those large events. This is illustrated using data from the Mediterranean coast of Spain, where the last years have been extremely disastrous. Thus, it is possible to compare the hazard assessment based on data previous to those years with the analysis including them. With our approach, no significant change is detected when the statistical uncertainty is taken into account. The hazard analysis is carried out with a standard model. Time-occurrence of events is assumed Poisson distributed. The wave-height of each event is modelled as a random variable which upper tail follows a Generalized Pareto Distribution (GPD). Moreover, wave-heights are assumed independent from event to event and also independent of their occurrence in time. A threshold for excesses is assessed empirically. The other three parameters (Poisson rate, shape and scale parameters of GPD) are jointly estimated using Bayes' theorem. Prior distribution accounts for physical features of ocean waves in the Mediterranean sea and experience with these phenomena. Posterior distribution of the parameters allows to obtain posterior distributions of other derived parameters like occurrence probabilities and return periods. Predictives are also available. Computations are carried out using the program BGPE v2.0

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The quantification of total (free+sulfated) metanephrines in urine is recommended to diagnose pheochromocytoma. Urinary metanephrines include metanephrine itself, normetanephrine and methoxytyramine, mainly in the form of sulfate conjugates (60-80%). Their determination requires the hydrolysis of the sulfate ester moiety to allow electrochemical oxidation of the phenolic group. Commercially available urine calibrators and controls contain essentially free, unhydrolysable metanephrines which are not representative of native urines. The lack of appropriate calibrators may lead to uncertainty regarding the completion of the hydrolysis of sulfated metanephrines, resulting in incorrect quantification. METHODS: We used chemically synthesized sulfated metanephrines to establish whether the procedure most frequently recommended for commercial kits (pH 1.0 for 30 min over a boiling water bath) ensures their complete hydrolysis. RESULTS: We found that sulfated metanephrines differ in their optimum pH to obtain complete hydrolysis. Highest yields and minimal variance were established for incubation at pH 0.7-0.9 during 20 min. CONCLUSION: Urinary pH should be carefully controlled to ensure an efficient and reproducible hydrolysis of sulfated metanephrines. Synthetic sulfated metanephrines represent the optimal material for calibrators and proficiency testing to improve inter-laboratory accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes a fast gas chromatography/negative-ion chemical ionization tandem mass spectrometric assay (Fast GC/NICI-MS/MS) for analysis of tetrahydrocannabinol (THC), 11-hydroxy-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH) in whole blood. The cannabinoids were extracted from 500 microL of whole blood by a simple liquid-liquid extraction (LLE) and then derivatized by using trifluoroacetic anhydride (TFAA) and hexafluoro-2-propanol (HFIP) as fluorinated agents. Mass spectrometric detection of the analytes was performed in the selected reaction-monitoring mode on a triple quadrupole instrument after negative-ion chemical ionization. The assay was found to be linear in the concentration range of 0.5-20 ng/mL for THC and THC-OH, and of 2.5-100 ng/mL for THC-COOH. Repeatability and intermediate precision were found less than 12% for all concentrations tested. Under standard chromatographic conditions, the run cycle time would have been 15 min. By using fast conditions of separation, the assay analysis time has been reduced to 5 min, without compromising the chromatographic resolution. Finally, a simple approach for estimating the uncertainty measurement is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the fluctuations of temporal criteria dynamics in the context of professional sport. Specifically, we try to verify the underlying deterministic patterns in the outcomes of professional basketball players. We use a longitudinal approach based on the analysis of the outcomes of 94 basketball players over ten years, covering practically players" entire career development. Time series were analyzed with techniques derived from nonlinear dynamical systems theory. These techniques analyze the underlying patterns in outcomes without previous shape assumptions (linear or nonlinear). These techniques are capable of detecting an intermediate situation between randomness and determinism, called chaos. So they are very useful for the study of dynamic criteria in organizations. We have found most players (88.30%) have a deterministic pattern in their outcomes, and most cases are chaotic (81.92%). Players with chaotic patterns have higher outcomes than players with linear patterns. Moreover, players with power forward and center positions achieve better results than other players. The high number of chaotic patterns found suggests caution when appraising individual outcomes, when coaches try to find the appropriate combination of players to design a competitive team, and other personnel decisions. Management efforts must be made to assume this uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tutkimuksen selvitettiin miten skenaarioanalyysia voidaan käyttää uuden teknologian tutkimisessa. Työssä havaittiin, että skenaarioanalyysin soveltuvuuteen vaikuttaa eniten teknologisen muutoksen taso ja saatavilla olevan tiedon luonne. Skenaariomenetelmä soveltuu hyvin uusien teknologioiden tutkimukseen erityisesti radikaalien innovaatioiden kohdalla. Syynä tähän on niihin liittyvä suuri epävarmuus, kompleksisuus ja vallitsevan paradigman muuttuminen, joiden takia useat muut tulevaisuuden tutkimuksen menetelmät eivät ole tilanteessa käyttökelpoisia. Työn empiirisessä osiossa tutkittiin hilaverkkoteknologian tulevaisuutta skenaarioanalyysin avulla. Hilaverkot nähtiin mahdollisena disruptiivisena teknologiana, joka radikaalina innovaationa saattaa muuttaa tietokonelaskennan nykyisestä tuotepohjaisesta laskentakapasiteetin ostamisesta palvelupohjaiseksi. Tällä olisi suuri vaikutus koko nykyiseen ICT-toimialaan erityisesti tarvelaskennan hyödyntämisen ansiosta. Tutkimus tarkasteli kehitystä vuoteen 2010 asti. Teorian ja olemassa olevan tiedon perusteella muodostettiin vahvaan asiantuntijatietouteen nojautuen neljä mahdollista ympäristöskenaariota hilaverkoille. Skenaarioista huomattiin, että teknologian kaupallinen menestys on vielä monen haasteen takana. Erityisesti luottamus ja lisäarvon synnyttäminen nousivat tärkeimmiksi hilaverkkojen tulevaisuutta ohjaaviksi tekijöiksi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The citriculture consists in several environmental risks, as weather changes and pests, and also consists in considerable financial risk, mainly due to the period ofreturn on the initial investment. This study was motivated by the need to assess the risks of a business activity such as citriculture. Our objective was to build a stochastic simulation model to achieve the economic and financial analysis of an orange producer in the Midwest region of the state of Sao Paulo, under conditions of uncertainty. The parameters used were the Net Present Value (NPV), the Modified Internal Rate of Return(MIRR), and the Discounted Payback. To evaluate the risk conditions we built a probabilistic model of pseudorandom numbers generated with Monte Carlo method. The results showed that the activity analyzed provides a risk of 42.8% to reach a NPV negative; however, the yield assessed by MIRR was 7.7%, higher than the yield from the reapplication of the positive cash flows. The financial investment pays itself after the fourteenth year of activity.