902 resultados para UNCONSTRAINED MINIMIZATION
Resumo:
Purpose – The international nuclear community continues to face the challenge of managing both the legacy waste and the new wastes that emerge from ongoing energy production. The UK is in the early stages of proposing a new convention for its nuclear industry, that is: waste minimisation through closely managing the radioactive source which creates the waste. This paper proposes a new technique (called waste and source material operability study (WASOP)) to qualitatively analyse a complex, waste-producing system to minimise avoidable waste and thus increase the protection to the public and the environment. Design/methodology/approach – WASOP critically considers the systemic impact of up and downstream facilities on the minimisation of nuclear waste in a facility. Based on the principles of HAZOP, the technique structures managers' thinking on the impact of mal-operations in interlinking facilities in order to identify preventative actions to reduce the impact on waste production of those mal-operations.' Findings – WASOP was tested with a small group of experienced nuclear regulators and was found to support their qualitative examination of waste minimisation and help them to work towards developing a plan of action. Originality/value – Given the newness of this convention, the wider methodology in which WASOP sits is still in development. However, this paper communicates the latest thinking from nuclear regulators on decision-making methodology for supporting waste minimisation and is hoped to form part of future regulatory guidance. WASOP is believed to have widespread potential application to the minimisation of many other forms of waste, including that from other energy sectors and household/general waste.
Resumo:
In this paper we present algorithms which work on pairs of 0,1- matrices which multiply again a matrix of zero and one entries. When applied over a pair, the algorithms change the number of non-zero entries present in the matrices, meanwhile their product remains unchanged. We establish the conditions under which the number of 1s decreases. We recursively define as well pairs of matrices which product is a specific matrix and such that by applying on them these algorithms, we minimize the total number of non-zero entries present in both matrices. These matrices may be interpreted as solutions for a well known information retrieval problem, and in this case the number of 1 entries represent the complexity of the retrieve and information update operations.
Resumo:
The problem of finite automata minimization is important for software and hardware designing. Different types of automata are used for modeling systems or machines with finite number of states. The limitation of number of states gives savings in resources and time. In this article we show specific type of probabilistic automata: the reactive probabilistic finite automata with accepting states (in brief the reactive probabilistic automata), and definitions of languages accepted by it. We present definition of bisimulation relation for automata's states and define relation of indistinguishableness of automata states, on base of which we could effectuate automata minimization. Next we present detailed algorithm reactive probabilistic automata’s minimization with determination of its complexity and analyse example solved with help of this algorithm.
Resumo:
2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.
Resumo:
AMS subject classification: 49J52, 90C30.
Resumo:
AMS subject classification: 65K10, 49M07, 90C25, 90C48.
Resumo:
Using the risk measure CV aR in �nancial analysis has become more and more popular recently. In this paper we apply CV aR for portfolio optimization. The problem is formulated as a two-stage stochastic programming model, and the SRA algorithm, a recently developed heuristic algorithm, is applied for minimizing CV aR.
Resumo:
A CV aR kockázati mérték egyre nagyobb jelentőségre tesz szert portfóliók kockázatának megítélésekor. A portfolió egészére a CVaR kockázati mérték minimalizálását meg lehet fogalmazni kétlépcsős sztochasztikus feladatként. Az SRA algoritmus egy mostanában kifejlesztett megoldó algoritmus sztochasztikus programozási feladatok optimalizálására. Ebben a cikkben az SRA algoritmussal oldottam meg CV aR kockázati mérték minimalizálást. ___________ The risk measure CVaR is becoming more and more popular in recent years. In this paper we use CVaR for portfolio optimization. We formulate the problem as a two-stage stochastic programming model. We apply the SRA algorithm, which is a recently developed heuristic algorithm, to minimizing CVaR.
Resumo:
A job shop with one batch processing and several discrete machines is analyzed. Given a set of jobs, their process routes, processing requirements, and size, the objective is to schedule the jobs such that the makespan is minimized. The batch processing machine can process a batch of jobs as long as the machine capacity is not violated. The batch processing time is equal to the longest processing job in the batch. The problem under study can be represented as Jm:batch:Cmax. If no batches were formed, the scheduling problem under study reduces to the classical job shop scheduling problem (i.e. Jm:: Cmax), which is known to be NP-hard. This research extends the scheduling literature by combining Jm::Cmax with batch processing. The primary contributions are the mathematical formulation, a new network representation and several solution approaches. The problem under study is observed widely in metal working and other industries, but received limited or no attention due to its complexity. A novel network representation of the problem using disjunctive and conjunctive arcs, and a mathematical formulation are proposed to minimize the makespan. Besides that, several algorithms, like batch forming heuristics, dispatching rules, Modified Shifting Bottleneck, Tabu Search (TS) and Simulated Annealing (SA), were developed and implemented. An experimental study was conducted to evaluate the proposed heuristics, and the results were compared to those from a commercial solver (i.e., CPLEX). TS and SA, with the combination of MWKR-FF as the initial solution, gave the best solutions among all the heuristics proposed. Their results were close to CPLEX; and for some larger instances, with total operations greater than 225, they were competitive in terms of solution quality and runtime. For some larger problem instances, CPLEX was unable to report a feasible solution even after running for several hours. Between SA and the experimental study indicated that SA produced a better average Cmax for all instances. The solution approaches proposed will benefit practitioners to schedule a job shop (with both discrete and batch processing machines) more efficiently. The proposed solution approaches are easier to implement and requires short run times to solve large problem instances.
Resumo:
This dissertation develops an innovative approach towards less-constrained iris biometrics. Two major contributions are made in this research endeavor: (1) Designed an award-winning segmentation algorithm in the less-constrained environment where image acquisition is made of subjects on the move and taken under visible lighting conditions, and (2) Developed a pioneering iris biometrics method coupling segmentation and recognition of the iris based on video of moving persons under different acquisitions scenarios. The first part of the dissertation introduces a robust and fast segmentation approach using still images contained in the UBIRIS (version 2) noisy iris database. The results show accuracy estimated at 98% when using 500 randomly selected images from the UBIRIS.v2 partial database, and estimated at 97% in a Noisy Iris Challenge Evaluation (NICE.I) in an international competition that involved 97 participants worldwide involving 35 countries, ranking this research group in sixth position. This accuracy is achieved with a processing speed nearing real time. The second part of this dissertation presents an innovative segmentation and recognition approach using video-based iris images. Following the segmentation stage which delineates the iris region through a novel segmentation strategy, some pioneering experiments on the recognition stage of the less-constrained video iris biometrics have been accomplished. In the video-based and less-constrained iris recognition, the test or subject iris videos/images and the enrolled iris images are acquired with different acquisition systems. In the matching step, the verification/identification result was accomplished by comparing the similarity distance of encoded signature from test images with each of the signature dataset from the enrolled iris images. With the improvements gained, the results proved to be highly accurate under the unconstrained environment which is more challenging. This has led to a false acceptance rate (FAR) of 0% and a false rejection rate (FRR) of 17.64% for 85 tested users with 305 test images from the video, which shows great promise and high practical implications for iris biometrics research and system design.
Resumo:
Cooperative communication has gained much interest due to its ability to exploit the broadcasting nature of the wireless medium to mitigate multipath fading. There has been considerable amount of research on how cooperative transmission can improve the performance of the network by focusing on the physical layer issues. During the past few years, the researchers have started to take into consideration cooperative transmission in routing and there has been a growing interest in designing and evaluating cooperative routing protocols. Most of the existing cooperative routing algorithms are designed to reduce the energy consumption; however, packet collision minimization using cooperative routing has not been addressed yet. This dissertation presents an optimization framework to minimize collision probability using cooperative routing in wireless sensor networks. More specifically, we develop a mathematical model and formulate the problem as a large-scale Mixed Integer Non-Linear Programming problem. We also propose a solution based on the branch and bound algorithm augmented with reducing the search space (branch and bound space reduction). The proposed strategy builds up the optimal routes from each source to the sink node by providing the best set of hops in each route, the best set of relays, and the optimal power allocation for the cooperative transmission links. To reduce the computational complexity, we propose two near optimal cooperative routing algorithms. In the first near optimal algorithm, we solve the problem by decoupling the optimal power allocation scheme from optimal route selection. Therefore, the problem is formulated by an Integer Non-Linear Programming, which is solved using a branch and bound space reduced method. In the second near optimal algorithm, the cooperative routing problem is solved by decoupling the transmission power and the relay node se- lection from the route selection. After solving the routing problems, the power allocation is applied in the selected route. Simulation results show the algorithms can significantly reduce the collision probability compared with existing cooperative routing schemes.
Resumo:
Patient awareness and concern regarding the potential health risks from ionizing radiation have peaked recently (Coakley et al., 2011) following widespread press and media coverage of the projected cancer risks from the increasing use of computed tomography (CT) (Berrington et al., 2007). The typical young and educated patient with inflammatory bowel disease (IBD) may in particular be conscious of his/her exposure to ionising radiation as a result of diagnostic imaging. Cumulative effective doses (CEDs) in patients with IBD have been reported as being high and are rising, primarily due to the more widespread and repeated use of CT (Desmond et al., 2008). Radiologists, technologists, and referring physicians have a responsibility to firstly counsel their patients accurately regarding the actual risks of ionizing radiation exposure; secondly to limit the use of those imaging modalities which involve ionising radiation to clinical situations where they are likely to change management; thirdly to ensure that a diagnostic quality imaging examination is acquired with lowest possible radiation exposure. In this paper, we synopsize available evidence related to radiation exposure and risk and we report advances in low-dose CT technology and examine the role for alternative imaging modalities such as ultrasonography or magnetic resonance imaging which avoid radiation exposure.
Resumo:
Demand response (DR) algorithms manipulate the energy consumption schedules of controllable loads so as to satisfy grid objectives. Implementation of DR algorithms using a centralized agent can be problematic for scalability reasons, and there are issues related to the privacy of data and robustness to communication failures. Thus, it is desirable to use a scalable decentralized algorithm for the implementation of DR. In this paper, a hierarchical DR scheme is proposed for peak minimization based on Dantzig-Wolfe decomposition (DWD). In addition, a time weighted maximization option is included in the cost function, which improves the quality of service for devices seeking to receive their desired energy sooner rather than later. This paper also demonstrates how the DWD algorithm can be implemented more efficiently through the calculation of the upper and lower cost bounds after each DWD iteration.
Resumo:
We examine how using information on unconstrained demand can improve operational decisions. Specifically, we examine the widespread problem of developing course schedules in not-for-profit university settings. We investigate the potential benefit of incorporating, into the scheduling process, information on the unconstrained demand of students for courses. Prior to this study, the status quo in our college, like that in a large proportion of university settings, was building the course schedule to avoid time conflicts between required courses and to minimize time conflicts between designated groups of courses, such as electives in a particular area. Compared to the status quo approach, we find that, based on three semester's worth of actual data, an approach that explicitly considers students’ course preferences improves a student-based metric of schedule quality on the order of over 4% (which is the equivalent, in our setting, of improving service for over 20% of students).
Resumo:
Policy and decision makers dealing with environmental conservation and land use planning often require identifying potential sites for contributing to minimize sediment flow reaching riverbeds. This is the case of reforestation initiatives, which can have sediment flow minimization among their objectives. This paper proposes an Integer Programming (IP) formulation and a Heuristic solution method for selecting a predefined number of locations to be reforested in order to minimize sediment load at a given outlet in a watershed. Although the core structure of both methods can be applied for different sorts of flow, the formulations are targeted to minimization of sediment delivery. The proposed approaches make use of a Single Flow Direction (SFD) raster map covering the watershed in order to construct a tree structure so that the outlet cell corresponds to the root node in the tree. The results obtained with both approaches are in agreement with expert assessments of erosion levels, slopes and distances to the riverbeds, which in turn allows concluding that this approach is suitable for minimizing sediment flow. Since the results obtained with the IP formulation are the same as the ones obtained with the Heuristic approach, an optimality proof is included in the present work. Taking into consideration that the heuristic requires much less computation time, this solution method is more suitable to be applied in large sized problems.