501 resultados para Triángulo semiótico
Resumo:
La enseñanza-aprendizaje de los objetos básicos del Análisis Matemático, en el nivel de Bachillerato y específicamente los fenómenos didácticos que emergen a lo largo del proceso de instrucción, ha constituido una problemática de investigación, en cuanto a los fenómenos didácticos que emergen a lo largo del proceso de instrucción, hoy vigente y en desarrollo. Tal y como indica Artigue (1998), para avanzar en la investigación han de efectuarse propuestas ligadas a enfoques de tipo ecológico y semiótico, donde las técnicas de reconstrucción del conocimiento matemático den explicaciones sólidas a tales problemas. En este trabajo, que se centra en el objeto: límite, tratamos de aportar una nueva visión del problema centrados en el objeto límite, por medio de un enfoque ontológico-semiótico de la cognición matemática (Godino, 2002).
Resumo:
En el presente documento reportamos parte de los resultados obtenidos de una investigación que centró su atención en el estudio de algunos tópicos de la trigonometría plana presente en los libros de texto de matemáticas de la educación media (15-18 años). En particular, nos propusimos interpretar la manera en que los libros de texto de matemáticas ponen de relieve los aspectos variacionales en estos tópicos. A través de la técnica del análisis de contenido pudimos observar que generalmente esta temática se desarrolla a través de expresiones algebraicas para calcular “datos fijos y desconocidos” de un triángulo; los resultados del estudio muestran que la necesidad de diseñar propuestas alternativas, en las cuales se haga hincapié en la visualización de relaciones “dinámicas” y funcionales entre los ángulos y los lados de un triángulo.
Resumo:
Este documento se elabora a partir de una revisión inicial de literatura donde se analizaron los Lineamientos Curriculares, los Estándares Básicos de Competencia y algunos estudios e investigaciones en el campo de la variación y la trigonometría. Desde los elementos teóricos observados en la literatura se hizo indispensable un análisis de algunos libros de texto frente al tipo de ejercicios que se proponía para abordar la trigonometría plana; de este análisis surgió la necesidad de diseñar propuestas alternativas en las cuales se haga hincapié en la visualización de relaciones funcionales entre los ángulos y los lados de un triángulo; de este modo, se espera aportar elementos para superar la idea de que las relaciones trigonométricas son “fórmulas” para calcular datos fijos y desconocidos de un triángulo.
Resumo:
Se presentan en este reporte algunos resultados obtenidos en el aula de matemática a propósito del desarrollo de la situación problema: ¿Qué relación existe entre el ángulo en posición normal y el cociente del lado opuesto y la hipotenusa del triángulo rectángulo? (Fig. 1) Esta actividad se implementó con el objetivo de contribuir al desarrollo del pensamiento variacional de los alumnos de 10º grado jornada de la tarde del Colegio Nacional Loperena de Valledupar, a través de la mediación instrumental de la calculadora algebraica TI-92+ y el uso de las distintas representaciones semióticas para movilizar el aprendizaje de la red conceptual subyacente a la función Seno.
Resumo:
En este artículo mostraremos unas extensiones del Teorema de Pitágoras en su acepción geométrica, tomando en consideración el área de las figuras geométricas que están sobre los lados de un triángulo rectángulo y de esta manera ver que se cumple la relación Pitagórica para cualquier tipo de figuras que cumplan cierta condición. En particular, esta extensión la vamos a realizar usando las cuadraturas del rectángulo o del triángulo, como por ejemplo para el triángulo equilátero y luego para los semicírculos o las lúnulas, para lo cual cuadratura es lo mismo que decir área.
Resumo:
A atividade que descrevemos teve como objetivo possibilitar aos alunos e professores supervisores bolsistas do Programa de Bolsas de Iniciação à Docência - PIBID do curso de Matemática da Universidade Federal do Triângulo Mineiro em Uberaba, Minas Gerais, a prática da estatística através de atividades de ensino utilizando projetos. Assim, através da aplicação de um questionário a 198 alunos do 3º ano do Ensino Médio de duas escolas estaduais pretendeu-se compreender os problemas que afetam a escolha profissional e a motivação ou não em continuar os estudos. Os resultados indicaram que a maioria dos alunos pretende dar continuidade aos estudos e o que dificultaria esse processo seria: condições financeiras e disponibilidade de tempo. Evidenciamos que as atividades de organização de pesquisa de campo, coleta, tabulação de dados, interpretação e análise dos dados despertou o espírito investigativo nos alunos.
Resumo:
En este trabajo presentamos el estudio semiótico de las respuestas de estudiantes mexicanos de Educación Secundaria y Bachillerato con el fin de detectar conflictos semióticos sobre la comprensión del concepto de mediana. Se observa mayor dificultad en ambos grupos al resolver estos problemas de un cuestionario sobre medidas de tendencia central. Utilizamos el Enfoque Onto‐Semiótico propuesto por Godino y colaboradores. Clasificamos las respuestas en categorías de los conflictos semióticos encontrados y comparamos los resultados en ambos grupos de estudiantes.
Resumo:
La propuesta se sostiene en un Proyecto de Investigación que busca el desarrollo de estrategias innovadoras en la enseñanza de la matemática. Se apoya en una concepción de aprendizaje constructivo y significativo. Pretende brindar al profesor un material estructurado en forma clara, precisa y amena, elaborado con todos los elementos que consideramos necesarios para ser un instrumento eficaz para la enseñanza de Triángulo. Fue diseñado, no como algo prescriptivo sino, como una reflexión sobre la "buena receta", es decir, para que oriente el análisis y los criterios de acción, discuta y exprese los supuestos y permita al docente decidir entre alternativas y comprobar resultados. A través de esta secuencia el alumno investiga si es posible construir triángulos que cumplan determinadas condiciones, puede explorar de forma interactiva y conjeturar las propiedades de los ángulos interiores y exteriores, la propiedad correspondiente a los lados y las rectas y puntos notables de un triángulo.
Resumo:
El presente trabajo consistió en caracterizar los significados elementales y sistémicos a los protocolos de respuestas dadas por un estudiante sobre ecuaciones de segundo grado y los puestos de manifiesto, en relación al mismo tema, por los autores del libro de texto que se utilizó de apoyo a la enseñanza y aprendizaje. Para tal fin aplicamos la técnica del análisis semiótico, generada del modelo ontológico semiótico de la cognición e instrucción matemática (Godino, 2003 y Godino y Arrieche, 2001), que nos permitió determinar el significado institucional de referencia y el significado personal declarado. También se identificaron conflictos semióticos, es decir; discordancias entre los significados personales e institucionales.
Resumo:
La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).
Resumo:
Se presenta un modelo geométrico para la construcción de un segmento llamado Escintor, que divide a un triángulo en dos poligonales de igual perímetro, además se demuestra la existencia de otras rectas notables en un triángulo denominadas Mescintriz y Vescintriz con propiedades similares a las otras rectas ya conocidas; así mismo se muestra como el Mescincentro y el Vescincentro, puntos donde se intersecan las Mescintrices y las Vescintrices respectivamente, están alineados con el Baricentro y el Incentro en una recta que guarda mucha semejanza con la Recta de Euler.
Resumo:
Desde nuestra perspectiva, la construcción del conocimiento está vinculada con el ejercicio de las prácticas sociales (Arrieta, 2003). Así, las herramientas trigonométricas, en particular el seno, se encuentran asociadas a las prácticas donde son utilizadas. La herramienta seno, se encuentra relacionada con diferentes prácticas, que en uno u otro contexto son prioritarias. Por ejemplo, la herramienta seno como modelo periódico se encuentra asociado a las prácticas de comunidades de ingenieros en electrónica, mientras que en otras comunidades el seno es utilizado como razón de dos lados de un triángulo rectángulo. La forma en cómo vive en contextos escolares, muestra que generalmente no es utilizada como herramienta y que aún cuando se introduce como razón trigonométrica el seno esta desligado de la práctica de hacer semejanza con triángulos.
Resumo:
Se reporta una investigación realizada con alumnos de 15- 16 años sobre los algoritmos de construcción de un Arco Capaz de segmento y ángulo dado. Se propuso a los alumnos un problema cuya solución óptima es un Arco Capaz de segmento y ángulo dado, y se les requirió luego que construyeran dicho arco utilizando regla, compás y semicírculo. Los alumnos idearon diversas construcciones para el Arco Capaz pero en ningún momento aparece la construcción tradicional de Euclides. Básicamente, la idea que usan los estudiantes para construir el Arco Capaz, es la de obtener un triángulo cualquiera tal que uno de sus ángulos sea el ángulo dado para luego determinar su circuncentro y trazar el Arco.
Resumo:
Con base en un análisis de los lineamientos curriculares, los estándares básicos de competencia y algunos estudios e investigaciones sobre la variación asociada al estudio de la trigonometría plana, decidimos aplicar la técnica del análisis de contenido a algunos libros de texto del grado décimo frente al tipo de ejercicios y “problemas” que se proponen para abordar el estudio de las relaciones trigonométricas; este análisis muestra que generalmente esta temática se desarrolla a través de expresiones algebraicas para calcular datos fijos y desconocidos de un triángulo. Estos resultados muestran la necesidad de diseñar propuestas alternativas en las cuales se haga hincapié en la visualización de relaciones “dinámicas” y funcionales entre los ángulos y los lados de un triángulo.
Resumo:
La primera parte se dedicó al concepto de fractal, su dimensión y la generación de algunos tipos de fractales (determinista lineales y sistemas de funciones iteradas) y se hizo un estudio exhaustivo del triángulo de Sierpinski. Continuamos aquí con otras formas de generar fractales.