979 resultados para Transparent silicate glass ceramics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

研究了La2O3对Yb:Y2O3透明陶瓷光谱性能的影响,添加适量La2O3以后,Yb:Y2O3透明陶瓷的吸收峰和发射峰的位置不变,但由于La^3+的离子半径大于Y^3+的离子半径,在Y2O3中引入La^3+离子后,导致Y2O3晶格常数变大,晶场强度变弱,同时降低了Y2O3晶体的有序度,致使发射峰强度有所下降,发射截面变小.过量的№La2O3(x=0.16)造成yb^3+激活离子发射强度明显下降;其荧光寿命在添加La2O3后总体增大45%-60%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lasing in an end-pumped gain guided index-antiguided (GG-IAG) Yb3+-doped silicate glass fiber with a 200 mu m diameter core is demonstrated. Laser beams with similar beam propagation factors M (2) and mode field diameters W (0) (> 160 mu m) were observed at the output end of the GG-IAG fibers under different pump powers, which indicated that single mode behavior and excellent beam quality were achieved during propagation. Furthermore, the laser amplifier characteristics in the present Yb3+-doped GG-IAG fiber were also evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A red long lasting phosphor Zn-3(PO4)(2): Mn2+ Ga3+ (ZPMG) was prepared by ceramic method, and phase conversion and spectral properties were investigated. Results indicated that the phase conversion from alpha-Zn-3(PO4), beta-Zn-3(PO4)(2) to gamma-Zn-3(PO4)(2) occurs with different manganese concentration incorporated and sinter process. The structural change induced by the phase transformation results in a remarkable difference in the spectral properties. The possible luminescence mechanism for this red LLP with different forms has been illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freestanding polyparaphenylene films were obtained on polymerization of benzene at potential of 1.2 V versus Al wire on substrates like platinum/transparent conducting glass as an anode. The electrolyte used was chloroaluminate room-temperature melt, which was prepared by intimate mixing of a 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminum chloride to yield a viscous liquid. This liquid was miscible in all proportions with benzene and other aromatic hydrocarbons in all proportions at room temperature. The polyparaphenylene films deposited on platinum anode exhibited a prominent cyclic voltammetric peak at 0.7 V versus Al wire as reference electrode in chloroaluminate medium. The impedance spectra gave low charge transfer resistance. The diffused reflectance electronic spectra of the film gave the peaks at 386 nm and 886 nm. The PPP films showed electronic conductivity around 3–4 × 104 S/cm by four probe method under nitrogen atmosphere. The polymer was also characterized by IR spectra, thermal studies, and SEM studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of large-scale implementation of Li-air batteries (LABs) hinges on understanding the thermodynamic and kinetic factors that control charge-discharge rates, efficiency and life times. Here, the kinetics of bias-induced reactions is explored locally on the surface of Li-ion conductive glass ceramics, a preferred electrolyte for LABs, using direct current-voltage and strain spectroscopies. Above a critical bias, particle growth kinetics were found to be linear in both the bias and time domains. Partial reversibility was observed for Li particles as evidenced by the presence of anodic peaks following the Li(+) reduction, as well an associated reduction in particle height. The degree of reversibility was highest for the smallest particles formed. These observations thus suggest the possibility of producing nanobatteries with an active anode volume of the order of 0.1 al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O cimento ósseo acrílico é o único material utilizado para a fixação de próteses em cirurgias ortopédicas, surgindo como uma alternativa às técnicas não cimentadas. Cerca de um milhão de pacientes são anualmente tratados para a substituição total da articulação do quadril e do joelho. Com a maior expectativa de vida da população e o aumento do número de cirurgias realizadas por ano espera-se que o uso do cimento ósseo aumente substancialmente. A fraca ligação do cimento ao osso é um problema comum que pode causar perda asséptica da prótese. Assim, torna-se necessário investir no desenvolvimento de cimentos ósseos alternativos que permitam promover maior estabilidade e melhor desempenho do implante. O principal objetivo desta tese foi desenvolver um cimento ósseo bioativo, capaz de ligar-se ao osso, com propriedades melhoradas relativamente aos sistemas convencionais. A preparação dos materiais foi realizada por dois processos diferentes, a polimerização por via térmica e a polimerização por via química. Inicialmente, utilizando o processo térmico, foram desenvolvidos compósitos de PMMA-co-EHA reforçados com vidro de sílica (CSi) e vidro de boro (CB) e comparados em termos do seu comportamento in vitro em meio acelular e celular. A formação de precipitados de fosfato de cálcio foi observada sobre a superfície de todos os compósitos indicando que estes materiais são potencialmente bioativos. Em relação à avaliação biológica o CSi demonstrou um efeito indutor da proliferação das células. As células apresentaram uma morfologia normal e alta taxa de crescimento quando comparadas com o padrão de cultura. Por outro lado ocorreu inibição da proliferação celular para o CB provavelmente devido à sua elevada taxa de degradação, levando a uma elevada concentraçao de iões de B e de Mg no meio de cultura. O efeito do vidro nos cimentos curados por via química, incorporando um activador de baixa toxicidade, também foi avaliado. Os resultados sugerem que as novas formulações podem diminuir o efeito exotérmico na cura do cimento e melhorar as propriedades mecânicas (flexão e compressão). Outro estudo conduzido neste trabalho explorou a possibilidade de incorporar ibuprofeno (fármaco anti-inflamatório) no cimento, dando origem a um material capaz de ser simultaneamente, bioativo e promotor da libertação controlada de fármacos. Neste contexto foi evidenciado que o desempenho do cimento desenvolvido pode contribuir para minimizar o processo inflamatório associado a uma cirurgia ortopédica. Finalmente, a fase sólida do cimento ósseo bioativo foi modificada por diferentes polímeros biodegradáveis. A adição deste enchimento deu origem a um cimento parcialmente biodegradável que pode permitir a formação de poros e o crescimento ósseo para o interior do cimento, resultando numa melhor fixação da prótese.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) – Fluorapatite (Ca5(PO4)3F) – Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1–12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass®. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass–ceramic materials are excellent candidates for applications in bone regeneration and for the fabrication of scaffolds for tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconducting films of (n-type) ZnSe and (p-type) nitrogen-doped ZnSe were electrodeposited by a linear-sweep voltammetric technique on to a substrate of fluorine-tin oxide (FM) glass ceramics. The films were characterized by scanning electron microscopy, energy-dispersive X-ray analysis and grazing-incidence X-ray diffraction. The results indicated that the material was deposited uniformly over the substrate, forming clusters when the Zn content of the bath was 0.1 mol L(-1) and a film when it was 0.2 or 0.3 mol L(-1). The effectiveness of doping the films with nitrogen by adding ammonium sulfate to the deposition solution was assessed by measuring the film-electrolyte interface capacitance (C) at various applied potentials (E(ap)) and plotting Mott-Schottky curves (C(-2) vs E(ap)), whose slope sign was used to identify p-type ZnSe. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells the solid oxide fuel are systems capable to directly convert energy of a chemical reaction into electric energy in clean, quiet way and if its components in the solid state differentiate of excessively the techniques for having all. Its more common geometric configurations are: the tubular one and to glide. Geometry to glide beyond the usual components (anode, cathode and electrolyte) needs interconnect and sealant. E the search for materials adjusted for these components is currently the biggest challenge found for the production of the cells. The sealants need to present chemical stability in high temperatures, to provoke electric isolation, to have coefficient of compatible thermal expansion with the excessively component ones. For presenting these characteristics the glass-ceramics materials are recommended for the application. In this work the study of the partial substitution of the ZrO2 for the Al2O3 in system LZS became it aiming at the formation of system LZAS, this with the addition of natural spodumene with 10, 20 and 30% in mass. The compositions had been casting to a temperature of 1500°C and later quickly cooled with the objective to continue amorphous. Each composition was worn out for attainment of a dust with average diameter of approximately 3μm and characterized by the techniques of DRX, FRX, MEV, dilatometric analysis and particle size analysis. Later the samples had been conformed and treated thermally with temperatures in the interval between 700-1000 °C, with platform of 10 minutes and 1 hour. The analyses for the treated samples had been: dilatometric analysis, DRX, FRX, electrical conductivity and tack. The results point with respect to the viability of the use of system LZAS for use as sealant a time that had presented good results as isolating electric, they had adhered to a material with similar α of the components of a SOFC and had presented steady crystalline phases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass ionomer cements (GICs) are products of the acid-base setting reaction between an finely fluoro-alumino silicate glass powder and poly(acrylic acid) in aqueous solution. The sol gel method is an adequate route of preparation of the glasses used to obtain the GICs. The objective of this paper was to compare two powders: a commercial and an experimental and to investigate the structural changes during hardening of the cements by FTIR and Al MAS NMR. These analyses showed that the experimental glass powder reacted with organic acid to form the GICs and it is a promising material to manufacture dental cements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium L-3-edge extended x-ray absorption fine structure (EXAFS) measurements were performed on rare earth doped fluorosilicate and fluoroborate glasses and glass ceramics. The well known nucleating effects of erbium ions for the crystallization of cubic lead fluoride (based on x-ray diffraction measurements) and the fact that the rare earth ions are present in the crystalline phase (as indicated by Er3+ emission spectra) seem in contradiction with the present EXAFS analysis, which indicates a lack of medium range structural ordering around the Er3+ ions and suggests that the lead fluoride crystallization does not occur in the nearest neighbor distance of the rare earth ion. Molecular dynamics simulations of the devitrification process of a lead fluoride glass doped with Er3+ ions were performed, and results indicate that Er3+ ions lower the devitrification temperature of PbF2, in good agreement with the experimental results. The genuine role of Er3+ ions in the devitrification process of PbF2 has been investigated. Although Er3+ ions could indeed act as seeds for crystallization, as experiments suggest, molecular dynamics simulation results corroborate the experimental EXAFS observation that the devitrification does not occur at its nearest neighbor distance. (c) 2008 American Institute of Physics.