923 resultados para Transfer function
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
The Adaptive Generalized Predictive Control (AGPC) algorithm can be speeded up using parallel processing. Since the AGPC algorithm needs to be fed with the knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
The Adaptive Generalized Predictive Control (GPC) algorithm can be speeded up using parallel processing. Since the GPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
For a greenhouse with a double polyethylene cover, it will be presented a dynamic climate transfer function and an adaptive controller for the air temperature. The model employ data acquired from the outside weather and from the heating and cooling inputs.
Resumo:
Tese de doutoramento, Geologia (Geologia Económica e do Ambiente), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
This paper presents the design analysis of novel tunable narrow-band bandpass sigma-delta modulators, that can achieve concurrent multiple noise-shaping for multi-tone input signals. This approach utilises conventional comb filters in conjunction with FIR, or allpass IIR fractional delay filters, to deliver the desired nulls for the quantisation noise transfer function. Detailed simulation results show that FIR fractional delay comb filter based sigma-delta modulators tune accurately to most centre frequencies, but suffer from degraded resolution at frequencies close to Nyquist. However, superior accuracies are obtained from their allpass IIR fractional delay counterpart at the expense of a slight shift in noise-shaping bands at very high frequencies.
Resumo:
This paper studies the dynamics of foot–ground interaction in hexapod locomotion systems. For that objective the robot motion is characterized in terms of several locomotion variables and the ground is modelled through a non-linear spring-dashpot system, with parameters based on the studies of soil mechanics. Moreover, it is adopted an algorithm with foot-force feedback to control the robot locomotion. A set of model-based experiments reveals the influence of the locomotion velocity on the foot–ground transfer function, which presents complex-order dynamics.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo Energia
Resumo:
Relationships between surface sediment diatom assemblages and lake trophic status were studied in 50 Canadian Precambrian Shield lakes in the Muskoka-Haliburton and southern Ontario regions. The purpose of this study was to develop mathematical regression models to infer lake trophic status from diatom assemblage data. To achieve this goal, however, additional investigations dealing with the evaluation of lake trophic status and the autecological features of key diatom species were carried out. Because a unifying index and classification for lake trophic status was not available, a new multiple index was developed in this study, by the computation of the physical, chemical and biological data from 85 south Ontario lakes. By using the new trophic parameter, the lake trophic level (TL) was determined: TL = 1.37 In[1 +(TP x Chl-a / SD)], where, TP=total phosphorus, Chl-a=chlorophyll-a and SD=Secchi depth. The boundaries between 7 lake trophic categories (Ultra-oligotrophic lakes: 0-0.24; Oligotrophic lakes: 0.241-1.8; Oligomesotrophic lakes: 1.813.0; Mesotrophic lakes: 3.01-4.20; Mesoeutrophic lakes: 4.21-5.4; Eutrophic lakes: 5.41-10 and Hyper-eutrophic lakes: above 10) were established. The new trophic parameter was more convenient for management of water quality, communication to the public and comparison with other lake trophic status indices than many of the previously published indices because the TL index attempts to Increase understanding of the characteristics of lakes and their comprehensive trophic states. It is more reasonable and clear for a unifying determination of true trophic states of lakes. Diatom specIes autecology analysis was central to this thesis. However, the autecological relationship of diatom species and lake trophic status had not previously been well documented. Based on the investigation of the diatom composition and variety of species abundance in 30 study lakes, the distribution optima of diatom species were determined. These determinations were based on a quantitative method called "weighted average" (Charles 1985). On this basis, the diatom species were classified into five trophic categories (oligotrophic, oligomesotrophic, mesotrophic, mesoeutrophic and eutrophic species groups). The resulting diatom trophic status autecological features were used in the regressIon analysis between diatom assemblages and lake trophic status. When the TL trophic level values of the 30 lakes were regressed against their fi ve corresponding diatom trophic groups, the two mathematical equations for expressing the assumed linear relationship between the diatom assemblages composition were determined by (1) uSIng a single regression technique: Trophic level of lake (TL) = 2.643 - 7.575 log (Index D) (r = 0.88 r2 = 0.77 P = 0.0001; n = 30) Where, Index D = (0% + OM% + M%)/(E% + ME% + M%); 4 (2) uSIng a' multiple regressIon technique: TL=4.285-0.076 0%- 0.055 OM% - 0.026 M% + 0.033 ME% + 0.065 E% (r=0.89, r2=0.792, P=O.OOOl, n=30) There was a significant correlation between measured and diatom inferred trophic levels both by single and multiple regressIon methods (P < 0.0001, n=20), when both models were applied to another 20 test lakes. Their correlation coefficients (r2 ) were also statistically significant (r2 >0.68, n=20). As such, the two transfer function models between diatoms and lake trophic status were validated. The two models obtained as noted above were developed using one group of lakes and then tested using an entirely different group of lakes. This study indicated that diatom assemblages are sensitive to lake trophic status. As indicators of lake trophic status, diatoms are especially useful in situations where no local trophic information is available and in studies of the paleotrophic history of lakes. Diatom autecological information was used to develop a theory assessing water quality and lake trophic status.
Resumo:
Various lake phases have developed in the upper Great Lakes in response to isostatic adjustment and changes in water supply since the retreat of the Laurentide Ice Sheet. Georgian Bay experienced a lowstand that caused a basin wide unconformity approximately 7,500 years ago that cannot be explained by geological events. Thecamoebians are shelled protozoans abundant in freshwater environments and they are generally more sensitive to changing environmental conditions than the surrounding vegetation. Thecamoebians can be used to reconstruct the paleolimnology. The abundance of thecamoebians belonging to the genus Centropyxis, which are known to tolerate slightly brackish conditions (i.e. high concentrations of ions) records highly evaporative conditions in a closed basin. During the warmer interval (9000 to 700 yBP), the Centropyxis - dominated population diminishes and is replaced by an abundant and diverse Difflugia dominate population. Historical climate records from Tobermory and Midland, Ontario were correlated with the Lake Huron water level curve. The fossil pollen record and comparison with modem analogues allowed a paleo-water budget to be calculated for Georgian Bay. Transfer function analysis of fossil pollen data from Georgian Bay records cold, dry winters similar to modem day Minneapolis, Minnesota. Drier climates around this time are also recorded in bog environments in Southem Ontario - the drying of Lake Tonawanda and inception of paludification in Willoughby Bog, for instance, dates around 7,000 years ago. The dramatic impact of climate change on the water level in Georgian Bay underlines the importance of paleoclimatic research for predicting future environmental change in the Great Lakes.
Resumo:
Vagal baroreflex sensitivity (BRS) is a measure of short term blood pressure (BP) regulation through alterations in heart rate. Low BRS reflects impaired autonomic system regulation and has been found to be a surrogate marker for cardiovascular health. In particular, it has found to be associated with the pathogenesis of adult hypertension. However, only limited information exists as to the negative consequences of childhood BP on baroreflex function. The objective of this study was to investigate BRS in children with 2 different BP profiles while controlling for the effects of age, maturation, sex, and body composition. A preliminary subsample of 11-14 year-old children from the HBEAT (Heart Behavioural Environmental Assessment Team) Study was selected. The children were divided into 2 BP groups; high BP (HBP; 2:95tl1 percentile, n=21) and normal BP (NBP; <90th percentile, n=85). Following an initial 15 minutes of supine rest, 5 minutes of continuous beat-to-beat BP (Finapres) and RR interval (RRI) were recorded (standard ECG). Spectral indices were computed using Fast Fourier Transform and transfer function analysis was used to compute BRS. High frequency (HF) and low frequency (LF) power spectral areas were set to 0.15-0.4 Hz and 0.04-0.15 Hz, respectively. Body composition was measured using body mass index. After adjusting for body composition, maturation, age and sex ANCOV A results were as follows; LF and HF BRS, LF and HF RRI, and RRI total power were lower in the HBP versus NBP participants (p<0.05). As well, LF IHF SBP ratio was significantly higher in the HBP compared to the NBP group (p<0.05). The regression coefficients (unstandardized B) indicated that in changing groups (NBP to HBP) LF and HF BRS decreases by 4.04 and 6.18 ms/mmHg, respectively. Thus, as BP increases, BRS decreases. These data suggest that changes in autonomic activity occur in children who have HBP, regardless of age, sex, maturation, and body composition. Thus, despite their young age and relatively short amount of time having high BP compared with adults, these children are already demonstrating poor BP regulation and reduced cardiovagal activity. Given that childhood BP is associated with hypertension in adulthood, there is a growing concern in regards to the current cardiovascular health of our children and future adults.
Resumo:
Developmental coordination disorder (DCD) is a motor coordination disorder that is characterized by impairment of motor skills which leads to challenges with performing activities of daily living. Children with DCD have been shown to be less physically active and have increased body fatness. This is an important finding since a sedentary lifestyle and obesity are risk factors for cardiovascular disease. One indicator of cardiovascular health is baroreflex sensitivity (BRS), which is a measure of short term BP regulation that is accomplished through changes in HR. Diminished BRS is predictive of cardiovascular morbidity and mortality. The purpose of this study was to investigate BRS in 117 children aged 12 to 13 years with probable DCD (pOCO) and their matched controls with normal coordination. Following 15 minutes of supine rest, five minutes of continuous beat-by-beat blood pressure (Finapres) and RR interval were recorded (standard ECG). Spectral indices were computed using Fast Fourier Transform and transfer function analysis was used to compute BRS. High frequency and low frequency power spectral areas were set to 0.15-0.6 Hz and 0.04-0.15 Hz, respectively. BRS was compared between groups with an independent t-test and the difference was not significant. It is likely that a difference in BRS was not seen between groups since the difference in BMI between groups was small. As well, differences in BRS may not have manifested yet at this early age. However, the cardiovascular health of this population still deserves attention since differences in body composition and fitness were found between groups.
Resumo:
This thesis investigated the impact of pubertal maturation and sex on cardiovagal baroreflex sensitivity (BRS) and arterial properties of the common carotid artery (CCA), and the relationship between CCA arterial properties and BRS. This thesis also investigated the effect of orthostatic stress on arterial properties of the CCA and carotid sinus (CS), as well as their impact on BRS in response to orthostatic stress. Children and adolescents between the ages of 8-18 years were examined. To assess pubertal maturation participants were organized into five pubertal groups based on the criteria of Tanner. BRS was assessed by transfer function analysis in the low frequency range (0.05 – 0.15Hz). Pulse pressure (PP) was measured at the CCA (PPCCA) and CS (PPCS) using applanation tonometry, and at the finger (PPFinger) using photoplethysmography. Ultrasound sonography and applanation tonometry were used to determine the distensibility coefficient (DC) at the CCA (DCCCA) and CS (DCCS). A moderate posture stimulus was implemented by passively moving participants into a 50° seated-recumbent (SR) position. The results demonstrated a sex-by-maturation interaction on BRS (p= 0.019). BRS decreased from early- to post-puberty in males (p<0.01), and remained unchanged in females. Females demonstrated greater BRS compared to males post-puberty (p<0.05). CCA distensibility was not affected by sex or maturation and was not related to BRS. PPCS was greater than PPCCA (p<0.001), while PPFinger was greater than both PPCCA (p<0.001) and PPCS (p<0.001). In response to SR, the relative change in PPFinger was significantly different than the relative change in PPCCA (p<0.001) and PPCS (p<0.001), while the relative change between PPCCA and PPCS were not different. Finally, in response to SR there was a significant decrease in DCCS (p=0.001), but not DCCCA. The relative change in BRS in response to SR was significantly correlated to the relative change in DCCS (p=0.004), but not DCCCA. The findings demonstrated an important sex-dependent maturation effect on BRS in children and adolescents that was not explained by CCA distensibility. Also, the CS and CCA responded differently to orthostatic stress. The CS was more suitable to evaluate the effect of arterial distensibility on BRS in response to posture change.
Resumo:
The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.
Resumo:
A compact coplanar waveguide-fed (CPW) monopole antenna for ultra-wideband wireless communication is presented. The proposed antenna comprises of a CPW-fed beveled rectangular patch with a modified slotted ground. The overall size of the antenna is 30 mm 27 mm 1.6 mm. The lower edge of the band is attained by properly decoupling the resonant frequencies due to the extended ground plane and the beveled rectangular patch of the antenna. The upper edge of the radiating band is enhanced by beveling the ground plane corners near the feed point. Experimental results show that the designed antenna operates in the 2.7–12 GHz band, for S11 10 dB with a gain of 2.7–5 dBi. Both the frequency domain and time domain characteristics of the antenna are investigated using antenna transfer function. It is observed that the antenna exhibits identical radiation patterns and reasonable transient characteristics over the entire operating band