964 resultados para Traffic flow parameter
Resumo:
The Republic of South Africa since the 1948 inception of Apartheid policies has experienced economic problems resulting from spatially dispersed growth. The election of President Mandela in 1994, however, eliminated the last forms of Apartheid as well as its discriminatory spatial, social, and economic policies, specially toward black Africans. In Cape Town, South Africa, several initiatives to restructure and to economically revitalize blighted and abandoned township communities, like Langa, have been instituted. One element of this strategy is the development of activity streets. The main questions asked in this study are whether activity streets are a feasible solution to the local economic problems left by the apartheid system and whether activity streets represent an economically sustainable approach to development. An analysis of a proposed activity street in Langa and its potential to generate jobs is undertaken. An Employment Generation Model used in this study shows that many of the businesses rely on the local purchasing power of the residents. Since the economic activities are mostly service oriented, a combination of manufacturing industries and institutionally implemented strategies within the township will have to be developed in order to generate sustainable employment. The result seem to indicate that, in Langa, the activity street depend very much on an increase in sales, pedestrian and vehicular traffic flow. ^
Resumo:
Highways are generally designed to serve a mixed traffic flow that consists of passenger cars, trucks, buses, recreational vehicles, etc. The fact that the impacts of these different vehicle types are not uniform creates problems in highway operations and safety. A common approach to reducing the impacts of truck traffic on freeways has been to restrict trucks to certain lane(s) to minimize the interaction between trucks and other vehicles and to compensate for their differences in operational characteristics. ^ The performance of different truck lane restriction alternatives differs under different traffic and geometric conditions. Thus, a good estimate of the operational performance of different truck lane restriction alternatives under prevailing conditions is needed to help make informed decisions on truck lane restriction alternatives. This study develops operational performance models that can be applied to help identify the most operationally efficient truck lane restriction alternative on a freeway under prevailing conditions. The operational performance measures examined in this study include average speed, throughput, speed difference, and lane changes. Prevailing conditions include number of lanes, interchange density, free-flow speeds, volumes, truck percentages, and ramp volumes. ^ Recognizing the difficulty of collecting sufficient data for an empirical modeling procedure that involves a high number of variables, the simulation approach was used to estimate the performance values for various truck lane restriction alternatives under various scenarios. Both the CORSIM and VISSIM simulation models were examined for their ability to model truck lane restrictions. Due to a major problem found in the CORSIM model for truck lane modeling, the VISSIM model was adopted as the simulator for this study. ^ The VISSIM model was calibrated mainly to replicate the capacity given in the 2000 Highway Capacity Manual (HCM) for various free-flow speeds under the ideal basic freeway section conditions. Non-linear regression models for average speed, throughput, average number of lane changes, and speed difference between the lane groups were developed. Based on the performance models developed, a simple decision procedure was recommended to select the desired truck lane restriction alternative for prevailing conditions. ^
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
Toll plazas have several toll payment types such as manual, automatic coin machines, electronic and mixed lanes. In places with high traffic flow, the presence of toll plaza causes a lot of traffic congestion; this creates a bottleneck for the traffic flow, unless the correct mix of payment types is in operation. The objective of this research is to determine the optimal lane configuration for the mix of the methods of payment so that the waiting time in the queue at the toll plaza is minimized. A queuing model representing the toll plaza system and a nonlinear integer program have been developed to determine the optimal mix. The numerical results show that the waiting time can be decreased at the toll plaza by changing the lane configuration. For the case study developed an improvement in the waiting time as high as 96.37 percent was noticed during the morning peak hour.
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
En route speed reduction can be used for air traffic flow management (ATFM), e.g., delaying aircraft while airborne or realizing metering at an arrival fix. In previous publications, the authors identified the flight conditions that maximize the airborne delay without incurring extra fuel consumption with respect to the nominal (not delayed) flight. In this paper, the effect of wind on this strategy is studied, and the sensitivity to wind forecast errors is also assessed. A case study done in Chicago O’Hare airport (ORD) is presented, showing that wind has a significant effect on the airborne delay that can be realized and that, in some cases, even tailwinds might lead to an increase in the maximum amount of airborne delay. The values of airborne delay are representative enough to suggest that this speed reduction technique might be useful in a real operational scenario. Moreover, the speed reduction strategy is more robust than nominal operations against fuel consumption in the presence of wind forecast uncertainties.
Resumo:
One significant benefit of asphalt concrete pavement construction is that it may be opened to traffic within one hour after being laid. Therefore, road closure and detour are not necessary, but only temporary lane closure and control of traffic. This one lane construction, even though desirable in regard to maintaining traffic flow, does pose an additional problem. The longitudinal joint at centerline often becomes a maintenance problem. The objective of this research project is to identify construction procedures that will provide an improved centerline joint.
Resumo:
Traffic demand increases are pushing aging ground transportation infrastructures to their theoretical capacity. The result of this demand is traffic bottlenecks that are a major cause of delay on urban freeways. In addition, the queues associated with those bottlenecks increase the probability of a crash while adversely affecting environmental measures such as emissions and fuel consumption. With limited resources available for network expansion, traffic professionals have developed active traffic management systems (ATMS) in an attempt to mitigate the negative consequences of traffic bottlenecks. Among these ATMS strategies, variable speed limits (VSL) and ramp metering (RM) have been gaining international interests for their potential to improve safety, mobility, and environmental measures at freeway bottlenecks. Though previous studies have shown the tremendous potential of variable speed limit (VSL) and VSL paired with ramp metering (VSLRM) control, little guidance has been developed to assist decision makers in the planning phase of a congestion mitigation project that is considering VSL or VSLRM control. To address this need, this study has developed a comprehensive decision/deployment support tool for the application of VSL and VSLRM control in recurrently congested environments. The decision tool will assist practitioners in deciding the most appropriate control strategy at a candidate site, which candidate sites have the most potential to benefit from the suggested control strategy, and how to most effectively design the field deployment of the suggested control strategy at each implementation site. To do so, the tool is comprised of three key modules, (1) Decision Module, (2) Benefits Module, and (3) Deployment Guidelines Module. Each module uses commonly known traffic flow and geometric parameters as inputs to statistical models and empirically based procedures to provide guidance on the application of VSL and VSLRM at each candidate site. These models and procedures were developed from the outputs of simulated experiments, calibrated with field data. To demonstrate the application of the tool, a list of real-world candidate sites were selected from the Maryland State Highway Administration Mobility Report. Here, field data from each candidate site was input into the tool to illustrate the step-by-step process required for efficient planning of VSL or VSLRM control. The output of the tool includes the suggested control system at each site, a ranking of the sites based on the expected benefit-to-cost ratio, and guidelines on how to deploy the VSL signs, ramp meters, and detectors at the deployment site(s). This research has the potential to assist traffic engineers in the planning of VSL and VSLRM control, thus enhancing the procedure for allocating limited resources for mobility and safety improvements on highways plagued by recurrent congestion.
Resumo:
The Noise Pollution causes degradation in the quality of the environment and presents itself as one of the most common environmental problems in the big cities. An Urban environment present scenario and their complex acoustic study need to consider the contribution of various noise sources. Accordingly to computational models through mapping and prediction of acoustic scene become important, because they enable the realization of calculations, analyzes and reports, allowing the interpretation of satisfactory results. The study neighborhood is the neighborhood of Lagoa Nova, a central area of the city of Natal, which will undergo major changes in urban space due to urban mobility projects planned for the area around the stadium and the consequent changes of urban form and traffic. Thus, this study aims to evaluate the noise impact caused by road and morphological changes around the stadium Arena das Dunas in the neighborhood of Lagoa Nova, through on-site measurements and mapping using the computational model SoundPLAN year 2012 and the scenario evolution acoustic for the year 2017. For this analysis was the construction of the first acoustic mapping based on current diagnostic acoustic neighborhood, physical mapping, classified vehicle count and measurement of sound pressure level, and to build the prediction of noise were observed for the area study the modifications provided for traffic, urban form and mobility work. In this study, it is concluded that the sound pressure levels of the year in 2012 and 2017 extrapolate current legislation. For the prediction of noise were numerous changes in the acoustic scene, in which the works of urban mobility provided will improve traffic flow, thus reduce the sound pressure level where interventions are expected
Resumo:
Se han desarrollado cuatro mejoras en los proyectos de simulación de flujo de tráfico en tiempo acelerado. Los proyectos [1] y [2] realizan una simulación de flujo de tráfico en un CAS, Maxima, y usan Java, para realizar la GUI. Ambos usan Jacomax para realizar la comunicación Java-Maxima. La primera ha sido implementar un algoritmo Dijkstra difuso en [2] que simule (de forma más real que el algoritmo Dijkstra), el camino que sigue un vehículo entre un origen y un destino, dentro de un mapa (un grafo) que representa una zona de Málaga. Además, se ha personalizado el grafo inicial asociando uno ponderado a cada vehículo, en el cual, las aristas (las calles) tienen un peso calculado con una uniforme o una normal. Para ganar en rendimiento en [1] y [2], se ha permitido al usuario decidir cada cuantos pasos en Maxima se comunica con Java, eliminando así muchas comunicaciones que resultaban lentas. Además, se ha creado un programa con Java, el cual crea un paquete Maxima con las funciones de distribución, densidad, masa, variables aleatorias, que el usuario desee, dando la posibilidad de elegir entre las más usuales ya implementadas. Este paquete puede ser cargado en [1] y [2] permitiendo al usuario elegir la función de distribución que más se asemeje al fenómeno que se desea simular. La última ha sido conseguir que funcionen los proyectos [1] y [2] en una máquina Mac.
Resumo:
Este artículo contiene el estudio inicial de un modelo de predicción de tráfico, que intenta mostrar cómo puede complementarse la toma de decisiones que afecten a la ciudad a través de una buena planificación vial. Esto permitirá dar alternativas posibles de solución mediante la predicción de flujos de tráfico y determinando las intersecciones de mayor influencia dentro de la red vial, lo que por consecuencia reduciría costes en tiempo, combustible, contaminación, etc., obteniendo así una herramienta de ayuda en la toma de decisiones respecto del tráfico. Específicamente, se utiliza modelos dinámicos lineales para predecir el tráfico en distintos puntos de una ciudad y, en consecuencia, pronosticar su eventual saturación. Se puede así predecir puntos de la ciudad en la que es necesario actuar para aliviar los problemas de tráfico antes de que éstos lleguen a manifestarse.
Resumo:
Part 21: Mobility and Logistics
Resumo:
The Noise Pollution causes degradation in the quality of the environment and presents itself as one of the most common environmental problems in the big cities. An Urban environment present scenario and their complex acoustic study need to consider the contribution of various noise sources. Accordingly to computational models through mapping and prediction of acoustic scene become important, because they enable the realization of calculations, analyzes and reports, allowing the interpretation of satisfactory results. The study neighborhood is the neighborhood of Lagoa Nova, a central area of the city of Natal, which will undergo major changes in urban space due to urban mobility projects planned for the area around the stadium and the consequent changes of urban form and traffic. Thus, this study aims to evaluate the noise impact caused by road and morphological changes around the stadium Arena das Dunas in the neighborhood of Lagoa Nova, through on-site measurements and mapping using the computational model SoundPLAN year 2012 and the scenario evolution acoustic for the year 2017. For this analysis was the construction of the first acoustic mapping based on current diagnostic acoustic neighborhood, physical mapping, classified vehicle count and measurement of sound pressure level, and to build the prediction of noise were observed for the area study the modifications provided for traffic, urban form and mobility work. In this study, it is concluded that the sound pressure levels of the year in 2012 and 2017 extrapolate current legislation. For the prediction of noise were numerous changes in the acoustic scene, in which the works of urban mobility provided will improve traffic flow, thus reduce the sound pressure level where interventions are expected
Resumo:
A partire dagli anni ’50 furono sviluppati numerosi modelli con l’intento di studiare i fenomeni connessi al traffico. Alcuni di essi riuscirono non solo a spiegare i fenomeni per i quali erano stati ideati ma misero in evidenza altre caratteristiche tipiche dei sistemi dinamici, come la presenza di cicli di isteresi e cambiamenti nella distribuzione dei tempi di percorrenza in situazioni di congestione. Questo lavoro si propone di verificare la validità di un modello semplificato ideato per mettere in luce i comportamenti tipici di un sistema di traffico, in particolare le congestioni che si vengono a creare sulla rete stradale. Tale modello è stato implementato per mezzo della libreria C++ Traffic Flow Dynamics Model, reperibile al link https://github.com/Grufoony/TrafficFlowDynamicsModel. Ai fini dello studio sono stati utilizzati i Diagrammi Fondamentali Macroscopici, particolari diagrammi che mettono in relazione gli osservabili principali di un network stradale quali velocità, densità e flusso. Variando il carico immesso nella rete stradale è stato possibile studiare il sistema in diversi regimi: carico costante, carico piccato e carico periodico. Mediante questi studi sono emerse diverse proprietà tipiche di ogni regime e, per alcuni di essi, è stata verificate e giustificate la presenza di uno o più cicli di isteresi. In ultimo è stata effettuata una breve analisi ad-hoc volta a evidenziare i cambiamenti nella distribuzione dei tempi di percorrenza in relazione al regime di traffico considerato.
Resumo:
Mathematical models and the involved methods applied to real contexts are essential tools for designing and evaluating solutions concerning physical elements and/or organizational components of transportation systems. To deal with this, the systems engineering approach is used, which considers the relationships among the transportation system elements and their performances. This approach allows quantifying the effects of transportation projects by taking into account the intrinsic complexity of the transportation system and then assessing the effects of solutions to solve – or mitigate – transportation problems. This thesis focuses on the application of the transport system engineering approach to a real city – Bologna, in northern Italy – in order to: 1. simulate the current transportation system conditions (status quo); 2. compare and assess the results obtained by two different approaches for simulating the link traffic flows on the road transportation network and their related impacts (externalities) 3. identify potential solutions to solve critical aspects, particularly in terms of traffic flow congestion and related environmental impacts (findings)