970 resultados para Tornado Damage Assessment
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
This dissertation demonstrates an explanation of damage and reliability of critical components and structures within the second law of thermodynamics. The approach relies on the fundamentals of irreversible thermodynamics, specifically the concept of entropy generation due to materials degradation as an index of damage. All failure mechanisms that cause degradation, damage accumulation and ultimate failure share a common feature, namely energy dissipation. Energy dissipation, as a fundamental measure for irreversibility in a thermodynamic treatment of non-equilibrium processes, leads to and can be expressed in terms of entropy generation. The dissertation proposes a theory of damage by relating entropy generation to energy dissipation via generalized thermodynamic forces and thermodynamic fluxes that formally describes the resulting damage. Following the proposed theory of entropic damage, an approach to reliability and integrity characterization based on thermodynamic entropy is discussed. It is shown that the variability in the amount of the thermodynamic-based damage and uncertainties about the parameters of a distribution model describing the variability, leads to a more consistent and broader definition of the well know time-to-failure distribution in reliability engineering. As such it has been shown that the reliability function can be derived from the thermodynamic laws rather than estimated from the observed failure histories. Furthermore, using the superior advantages of the use of entropy generation and accumulation as a damage index in comparison to common observable markers of damage such as crack size, a method is proposed to explain the prognostics and health management (PHM) in terms of the entropic damage. The proposed entropic-based damage theory to reliability and integrity is then demonstrated through experimental validation. Using this theorem, the corrosion-fatigue entropy generation function is derived, evaluated and employed for structural integrity, reliability assessment and remaining useful life (RUL) prediction of Aluminum 7075-T651 specimens tested.
Resumo:
Vibration based damage identification methods examine the changes in primary modal parameters or quantities derived from modal parameters. As one method may have advantages over the other under some circumstances, a multi-criteria approach is proposed. Case studies are conducted separately on beam, plate and plate-on-beam structures. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on flexibility and strain energy changes before and after damage are obtained and used as the indices for the assessment of the state of structural health. Results show that the proposed multi-criteria method is effective in damage identification in these structures.
Resumo:
Studying the rate of cell migration provides insight into fundamental cell biology as well as a tool to assess the functionality of synthetic surfaces and soluble environments used in tissue engineering. The traditional tools used to study cell migration include the fence and wound healing assays. In this paper we describe the development of a microchannel based device for the study of cell migration on defined surfaces. We demonstrate that this device provides a superior tool, relative to the previously mentioned assays, for assessing the propagation rate of cell wave fronts. The significant advantage provided by this technology is the ability to maintain a virgin surface prior to the commencement of the cell migration assay. Here, the device is used to assess rates of mouse fibroblasts (NIH 3T3) and human osteosarcoma (SaOS2) cell migration on surfaces functionalized with various extracellular matrix proteins as a demonstration that confining cell migration within a microchannel produces consistent and robust data. The device design enables rapid and simplistic assessment of multiple repeats on a single chip, where surfaces have not been previously exposed to cells or cellular secretions.
Resumo:
Columns are one of the key load bearing elements that are highly susceptible to vehicle impacts. The resulting severe damages to columns may leads to failures of the supporting structure that are catastrophic in nature. However, the columns in existing structures are seldom designed for impact due to inadequacies of design guidelines. The impact behaviour of columns designed for gravity loads and actions other than impact is, therefore, of an interest. A comprehensive investigation is conducted on reinforced concrete column with a particular focus on investigating the vulnerability of the exposed columns and to implement mitigation techniques under low to medium velocity car and truck impacts. The investigation is based on non-linear explicit computer simulations of impacted columns followed by a comprehensive validation process. The impact is simulated using force pulses generated from full scale vehicle impact tests. A material model capable of simulating triaxial loading conditions is used in the analyses. Circular columns adequate in capacity for five to twenty story buildings, designed according to Australian standards are considered in the investigation. The crucial parameters associated with the routine column designs and the different load combinations applied at the serviceability stage on the typical columns are considered in detail. Axially loaded columns are examined at the initial stage and the investigation is extended to analyse the impact behaviour under single axis bending and biaxial bending. The impact capacity reduction under varying axial loads is also investigated. Effects of the various load combinations are quantified and residual capacity of the impacted columns based on the status of the damage and mitigation techniques are also presented. In addition, the contribution of the individual parameter to the failure load is scrutinized and analytical equations are developed to identify the critical impulses in terms of the geometrical and material properties of the impacted column. In particular, an innovative technique was developed and introduced to improve the accuracy of the equations where the other techniques are failed due to the shape of the error distribution. Above all, the equations can be used to quantify the critical impulse for three consecutive points (load combinations) located on the interaction diagram for one particular column. Consequently, linear interpolation can be used to quantify the critical impulse for the loading points that are located in-between on the interaction diagram. Having provided a known force and impulse pair for an average impact duration, this method can be extended to assess the vulnerability of columns for a general vehicle population based on an analytical method that can be used to quantify the critical peak forces under different impact durations. Therefore the contribution of this research is not only limited to produce simplified yet rational design guidelines and equations, but also provides a comprehensive solution to quantify the impact capacity while delivering new insight to the scientific community for dealing with impacts.
Resumo:
Diabetes is an increasingly prevalent disease worldwide. Providing early management of the complications can prevent morbidity and mortality in this population. Peripheral neuropathy, a significant complication of diabetes, is the major cause of foot ulceration and amputation in diabetes. Delay in attending to complication of the disease contributes to significant medical expenses for diabetic patients and the community. Early structural changes to the neural components of the retina have been demonstrated to occur prior to the clinically visible retinal vasculature complication of diabetic retinopathy. Additionally visual functionloss has been shown to exist before the ophthalmoscopic manifestations of vasculature damage. The purpose of this thesis was to evaluate the relationship between diabetic peripheral neuropathy and both retinal structure and visual function. The key question was whether diabetic peripheral neuropathy is the potential underlying factor responsible for retinal anatomical change and visual functional loss in people with diabetes. This study was conducted on a cohort with type 2 diabetes. Retinal nerve fibre layer thickness was assessed by means of Optical Coherence Tomography (OCT). Visual function was assessed using two different methods; Standard Automated Perimetry (SAP) and flicker perimetry were performed within the central 30 degrees of fixation. The level of diabetic peripheral neuropathy (DPN) was assessed using two techniques - Quantitative Sensory Testing and Neuropathy Disability Score (NDS). These techniques are known to be capable of detecting DPN at very early stages. NDS has also been shown as a gold standard for detecting 'risk of foot ulceration'. Findings reported in this thesis showed that RNFL thickness, particularly in the inferior quadrant, has a significant association with severity of DPN when the condition has been assessed using NDS. More specifically it was observed that inferior RNFL thickness has the ability to differentiate individuals who are at higher risk of foot ulceration from those who are at lower risk, indicating that RNFL thickness can predict late-staged DPN. Investigating the association between RNFL and QST did not show any meaningful interaction, which indicates that RNFL thickness for this cohort was not as predictive of neuropathy status as NDS. In both of these studies, control participants did not have different results from the type 2 cohort who did not DPN suggesting that RNFL thickness is not a marker for diagnosing DPN at early stages. The latter finding also indicated that diabetes per se, is unlikely to affect the RNFL thickness. Visual function as measured by SAP and flicker perimetry was found to be associated with severity of peripheral neuropathy as measured by NDS. These findings were also capable of differentiating individuals at higher risk of foot ulceration; however, visual function also proved not to be a maker for early diagnosis of DPN. It was found that neither SAP, nor flicker sensitivity have meaningful associations with DPN when neuropathy status was measured using QST. Importantly diabetic retinopathy did not explain any of the findings in these experiments. The work described here is valuable as no other research to date has investigated the association between diabetic peripheral neuropathy and either retinal structure or visual function.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.
Resumo:
This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.
Resumo:
Chronic venous leg ulcers are a detrimental health issue plaguing our society, resulting in long term pain, immobility and decreased quality of life for a large proportion of sufferers. The frequency of these chronic wounds has led current research to focus on the wound environment to provide important information regarding the prolonged, fluctuated or static healing patterns of these wounds. Disruption to the normal wound healing process results in release of multiple factors in the wound environment that could correlate to wound chronicity. These biochemical factors can often be detected through non-invasively sampling chronic wound fluid (CWF) from the site of injury. Of note, whilst there are numerous studies comparing acute and chronic wound fluids, there have not been any reports in the literature employing a longitudinal study in order to track biochemical changes in wound fluid as patients transition from a non-healing to healed state. Initially the objective of this study was to identify biochemical changes in CWF associated with wound healing using a proteomic approach. The proteomic approach incorporated a multi-dimensional liquid chromatography fractionation technique coupled with mass spectrometry (MS) to enable identification of proteins present in lower concentrations in CWF. Not surprisingly, many of the proteins identified in wound fluid were acute phase proteins normally expressed during the inflammatory phase of healing. However, the number of proteins positively identified by MS was quite low. This was attributed to the diverse range in concentration of protein species in CWF making it challenging to detect the diagnostically relevant low molecular weight proteins. In view of this, SELDI-TOF MS was also explored as a means to target low molecular weight proteins in sequential patient CWF samples during the course of healing. Unfortunately, the results generated did not yield any peaks of interest that were altered as wounds transitioned to a healed state. During the course of proteomic assessment of CWF, it became evident that a fraction of non-proteinaceous compounds strongly absorbed at 280 nm. Subsequent analyses confirmed that most of these compounds were in fact part of the purine catabolic pathway, possessing distinctive aromatic rings and which results in high absorbance at 254 nm. The accumulation of these purinogenic compounds in CWF suggests that the wound bed is poorly oxygenated resulting in a switch to anaerobic metabolism and consequently ATP breakdown. In addition, the presence of the terminal purine catabolite, uric acid (UA), indicates that the enzyme xanthine oxidoreductase (XOR) catalyses the reaction of hypoxanthine to xanthine and finally to UA. More importantly, the studies provide evidence for the first time of the exogenous presence of XOR in CWF. XOR is the only enzyme in humans capable of catalysing the production of UA in conjunction with a burst of the highly reactive superoxide radical and other oxidants like H2O2. Excessive release of these free radicals in the wound environment can cause cellular damage disrupting the normal wound healing process. In view of this, a sensitive and specific assay was established for monitoring low concentrations of these catabolites in CWF. This procedure involved combining high performance liquid chromatography (HPLC) with tandem mass spectrometry and multiple reaction monitoring (MRM). This application was selective, using specific MRM transitions and HPLC separations for each analyte, making it ideal for the detection and quantitation of purine catabolites in CWF. The results demonstrated that elevated levels of UA were detected in wound fluid obtained from patients with clinically worse ulcers. This suggests that XOR is active in the wound site generating significant amounts of reactive oxygen species (ROS). In addition, analysis of the amount of purine precursors in wound fluid revealed elevated levels of purine precursors in wound fluid from patients with less severe ulcers. Taken together, the results generated in this thesis suggest that monitoring changes of purine catabolites in CWF is likely to provide valuable information regarding the healing patterns of chronic venous leg ulcers. XOR catalysis of purine precursors not only provides a method for monitoring the onset, prognosis and progress of chronic venous leg ulcers, but also provides a potential therapeutic target by inhibiting XOR, thus blocking UA and ROS production. Targeting a combination of these purinogenic compounds and XOR could lead to the development of novel point of care diagnostic tests. Therefore, further investigation of these processes during wound healing will be worthwhile and may assist in elucidating the pathogenesis of this disease state, which in turn may lead to the development of new diagnostics and therapies that target these processes.
Resumo:
Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.
Resumo:
Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using Intra-class Correlation Coefficient (ICC) and Deviance Information Criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time, in good street lighting condition, involving pedestrian injuries are associated with a lower severity, while those in night time, at T/Y type intersections, on right-most lane, and installed with red light camera have larger odds of being severe. Moreover, heavy vehicles have a better resistance on severe crash, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.
Resumo:
A total histological grade does not necessarily distinguish between different manifestations of cartilage damage or degeneration. An accurate and reliable histological assessment method is required to separate normal and pathological tissue within a joint during treatment of degenerative joint conditions and to sub-classify the latter in meaningful ways. The Modified Mankin method may be adaptable for this purpose. We investigated how much detail may be lost by assigning one composite score/grade to represent different degenerative components of the osteoarthritic condition. We used four ovine injury models (sham surgery, anterior cruciate ligament/medial collateral ligament instability, simulated anatomic anterior cruciate ligament reconstruction and meniscal removal) to induce different degrees and potentially 'types' (mechanisms) of osteoarthritis. Articular cartilage was systematically harvested, prepared for histological examination and graded in a blinded fashion using a Modified Mankin grading method. Results showed that the possible permutations of cartilage damage were significant and far more varied than the current intended use that histological grading systems allow. Of 1352 cartilage specimens graded, 234 different manifestations of potential histological damage were observed across 23 potential individual grades of the Modified Mankin grading method. The results presented here show that current composite histological grading may contain additional information that could potentially discern different stages or mechanisms of cartilage damage and degeneration in a sheep model. This approach may be applicable to other grading systems.