932 resultados para Titanate, Nanofibre, Ion Exchange, Removal of Radioactive Ions, Adsorbent
Resumo:
Cross sections for charge transfer reactions of organic ions containing oxygen have been obtained using time-of-flight techniques. Charge transfer cross sections have been determined for reactions of 2.0 to 3.4 keV ions produced by electron impact ionization of oxygen containing molecules such as methanol, ethanal and ethanol. Experimental cross section magnitudes have been correlated with reaction energy defects computed from ion recombination energies and target ionization energies. Large cross sections are observed for reacting systems with small energy defects.
Resumo:
The Earth's bow shock is very efficient in accelerating ions out of the incident solar wind distribution to high energies (≈ 200 keV/e). Fluxes of energetic ions accelerated at the quasi-parallel bow shock, also known as diffuse ions, are best represented by exponential spectra in energy/charge, which require additional assumptions to be incorporated into these model spectra. One of these assumptions is a so-called "free escape boundary" along the interplanetary magnetic field into the upstream direction. Locations along the IBEX orbit are ideally suited for in situ measurements to investigate the existence of an upstream free escape boundary for bow shock accelerated ions. In this study we use 2 years of ion measurements from the background monitor on the IBEX spacecraft, supported by ACE solar wind observations. The IBEX Background Monitor is sensitive to protons > 14 keV, which includes the energy of the maximum flux for diffuse ions. With increasing distance from the bow shock along the interplanetary magnetic field, the count rates for diffuse ions stay constant for ions streaming away from the bow shock, while count rates for diffuse ions streaming toward the shock gradually decrease from a maximum value to ~1/e at distances of about 10 RE to 14 RE. These observations of a gradual decrease support the transition to a free escape continuum for ions of energy >14 keV at distances from 10 RE to 14 RE from the bow shock.
Resumo:
Copper nitride is a metastable material which results very attractive because of their potential to be used in functional device. Cu3 N easily decomposes into Cu and N2 by annealing [1] or irradiation (electron, ions, laser) [2, 3]. Previous studies carried out in N-rich Cu3 N films irradiated with Cu at 42MeV evidence a very efficient sputtering of N whose yield (5×10 3 atom/ion), for a film with a thickness of just 100 nm, suggest that the origin of the sputtering has an electronic nature. This N depletion was observed to be responsible for new phase formation ( Cu2 O) and pure Cu [4]
Crack mechanical failure in ceramic materials under ion irradiation: case of lithium niobate crystal
Resumo:
Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion- generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.
Resumo:
We have used 19F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of 19F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg2+. The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg2+ with an association constant in the range of 100 to 500 M−1, depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range.
Resumo:
April 1979.
Resumo:
Mode of access: Internet.
Resumo:
In this Comment on Feng's paper [Phys. Rev. A 63, 052308 (2001)], we show that Grover's algorithm may be performed exactly using the gate set given, provided that small changes are made to the gate sequence. An analytic expression for the probability of success of Grover's algorithm for any unitary operator U instead of Hadamard gate is presented.
Resumo:
A common problem encountered during the development of MS methods for the quantitation of small organic molecules by LGMS is the formation of non-covalently bound species or adducts in the electrospray interface. Often the population of the molecular ion is insignificant compared to those of all other forms of the analyte produced in the electrospray, making it difficult to obtain the sensitivity required for accurate quantitation. We have investigated the effects of the following variables: orifice potential, nebulizer gas flow, temperature, solvent composition and the sample pH on the relative distributions of ions of the types MH+, MNa+, MNH+, and 2MNa(+), where M represents a 4 small organic molecule: BAY 11-7082 ((E)-3-[4-methylphenylsulfonyl]-2-propenenitrile). Orifice potential, solvent composition and the sample pH had the greatest influence on the relative distributions of these ions, making these parameters the most useful for optimizing methods for the quantitation of small molecules.
Resumo:
A chromatographic method was developed for the determination of tryptophan content in food and feed proteins. The method involves separation and quantitation of tryptophan (released from protein by alkaline hydrolysis with NaOH) by isocratic ion-exchange chromatography with O-phthalaldehyde derivatization followed by fluorescence detection. In this procedure, chromatographic separation of the tryptophan and alpha-methyl tryptophan, the internal standard, was complete in 15 min, without any interference from other compounds. The precision of the method was 1-4%, relative standard deviation. Accuracy was validated by agreement with the value for chicken egg white lysozyme, a sequenced protein, and by quantitative recoveries after spiking with lysozyme. The method allows determination in a range of feed proteins, containing varied concentrations of tryptophan, and is applicable to systems used for routine amino acid analysis by ion-exchange chromatography. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fly ash was modified by hydrothermal treatment using NaOH solutions under various conditions for zeolite synthesis. The XRD patterns are presented. The results indicated that the samples obtained after treatment are much different. The XRD profiles revealed a number of new reflexes, suggesting a phase transformation probably occurred. Both heat treatment and chemical treatment increased the surface area and pore volume. It was found that zeolite P would be formed at the conditions of higher NaOH concentration and temperature. The treated fly ash was tested for adsorption of heavy metal ions and dyes in aqueous solution. It was shown that fly ash and the modified forms could effectively absorb heavy metals and methylene blue but not effectively adsorb rhodamine B. Modifying fly ash with NaOH solution would significantly enhance the adsorption capacity depending on the treatment temperature, time, and base concentration. The adsorption capacity of methylene blue would increases with pH of the dye solution and the sorption capacity of FA-NaOH could reach 5 x 10(-5) mol/g. The adsorption isotherm could be described by the Langmuir and Freundlich isotherm equations. Removal of copper and nickel ions could also be achieved on those treated fly ash. The removal efficiency for copper and nickel ions could be from 30% to 90% depending on the initial concentrations. The increase in adsorption temperature will enhance the adsorption efficiency for both heavy metals. The pseudo second-order kinetics would be better for fitting the dynamic adsorption of Cu and Ni ions. (c) 2005 Elsevier B.V. All rights reserved.