933 resultados para Third-order
Resumo:
In this paper the magnetic and magneto-optical properties of amorphous rare earth-transition metal (RE-TM) alloys as well as the magnetic coupling in the multi-layer thin films for high density optical data storage are presented. Using magnetic effect in scanning tunneling microscopy the clusters structure of amorphous RE-TM thin films has been observed and the perpendicular magnetic anisotropy in amorphous RE-TM thin films has been interpreted. Experimental results of quick phase transformation under short pulse laser irradiation of amorphous semiconductor and metallic alloy thin films for phase change optical recording are reported. A step-by-step phase transformation process through metastable states has been observed. The waveform of crystallization propagation in micro-size spot during laser recording in amorphous semiconductor thin films is characterized and quick recording and erasing mechanism for optical data storage with high performance are discussed. The nonlinear optical effects in amorphous alloy thin films have been studied. By photo-thermal effect or third order optical nonlinearity, the optical self-focusing is observed in amorphous mask thin films. The application of amorphous thin films with super-resolution near field structure for high-density optical data storage is performed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Glasses with compositions 50Bi
Resumo:
依据Z-scan技术,使用波长532nm的纳秒脉冲,研究了通过聚焦的飞秒脉冲诱导并辅以热处理得到的金纳米粒子析出的玻璃的非线性吸收.观察到金纳米粒子析出的玻璃具有饱和吸收特性.根据局域场效应,对实验结果拟合,得到在接近表面等离子体共振激发情况下,金纳米粒子三阶极化率虚部分别为Imχm^(3)=5.7×10^-7esu.玻璃样品中金纳米粒子的非线性响应主要起源于热电子贡献。
Resumo:
We obtain Au and Ag nanoparticles precipitated in glasses by irradiation of focused femtosecond pulses, and investigate the nonlinear absorptions of the glasses by using Z-scan technique with ns pulses at 532 nm. We observe the saturable absorption behavior for An nanoparticles precipitated glasses and the reverse saturable ones for Ag ones. We also obtain, by fitting to the experimental results in the light of the local field effect near and away from the surface plasmon resonance, chi(m)((3)) = 4.5 x 10(-7) and 5.9 x 10(-8) esu for m the imaginary parts of the third-order susceptibilities for Au and Ag nanoparticles, respectively. The nonlinear response of Au nanoparticles in the glass samples arises mainly from the hot-electron contribution and the saturation of the interband transitions near the surface plasmon resonance, whereas that of Ag nanoparticles in the glass samples from the interband transitions. These show that the obtained glasses can be used as optoelectronic devices suiting for different demands. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Atualmente a maior ameaça à integridade de ecossistemas aquáticos reside nas ações antrópicas, que através de alterações na cobertura vegetal ripária, atingem todos os compartimentos dos sistemas lóticos, alterando a estrutura física, química e biológica do rio e os padrões de ligação entre ecossistemas terrestres e aquáticos. A importância dos macroinvertebrados fragmentadores ainda não é bem conhecida nos trópicos. Eles podem contribuir para a decomposição de folhas em córregos, que é um processo fundamental para o fluxo de energia em rios de pequeno porte. Os processos de decomposição e produção secundária de macroinvertebrados aquáticos nos ecossistemas lóticos são intimamente relacionados com o aporte da vegetação terrestre, e podem ser sensíveis às alterações na cobertura vegetal ripária. Os objetivos desse estudo foram avaliar: (a) quais mudanças o desmatamento pode causar nos parâmetros físicos e químicos de rios; (b) os efeitos do desmatamento sobre a estrutura da comunidade de macroinvertebrados bentônicos associados às folhas, (c) nos processos ecossistêmicos, como decomposição foliar e produção secundária, e (d) a associação entre produção secundária de fragmentadores e decomposição foliar. O estudo foi realizado em 27 locais distribuídos em quatro córregos (7-8 locais por rio) de segunda-terceira ordem e que apresentavam um gradiente de desmatamento. Para estimar a taxa de decomposição, cinco pacotes de folha foram imersos em cada um dos pontos. Um pacote de folha foi retirado de cada ponto após 2, 7, 15 e 28 dias de imersão. O quinto pacote de folha foi retirado no 37 dia de imersão para as estimativas de produção secundária, biodiversidade e a diversidade funcional de insetos aquáticos. As concentrações de amônio aumentaram e a riqueza de espécies de insetos aquáticos e de EPTs (Ephemeroptera, Plecoptera e Trichoptera) dos pacotes de folhas diminuíram com o aumento do desmatamento. As taxas de decomposição diminuíram com o aumento do desmatamento. Os dados sugerem que a perda de vegetação ripária pela conversão em agropecuária teve impacto em parâmetros químicos e bióticos, tanto na estrutura da comunidade de macroinvertebrados quanto no funcionamento do ecossistema. Concluímos que a restauração e preservação da mata ripária deve ser um foco central das estratégias de gestão de ecossistemas lóticos para assegurar que os processos ecossistêmicos e a estrutura das comunidades em bacias hidrográficas estejam agindo como provedores dos serviços ambientais esperados.
Resumo:
Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.
Resumo:
Significant progress has been made towards understanding the global stability of slowly-developing shear flows. The WKBJ theory developed by Patrick Huerre and his co-authors has proved absolutely central, with the result that both the linear and the nonlinear stability of a wide range of flows can now be understood in terms of their local absolute/convective instability properties. In many situations, the local absolute frequency possesses a single dominant saddle point in complex X-space (where X is the slow streamwise coordinate of the base flow), which then acts as a single wavemaker driving the entire global linear dynamics. In this paper we consider the more complicated case in which multiple saddles may act as the wavemaker for different values of some control parameter. We derive a frequency selection criterion in the general case, which is then validated against numerical results for the linearized third-order Ginzburg-Landau equation (which possesses two saddle points). We believe that this theory may be relevant to a number of flows, including the boundary layer on a rotating disk and the eccentric Taylor-Couette-Poiseuille flow. © 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
The third-order optical nonlinear refractive properties of InAs/GaAs quantum dots grown by molecular beam epitaxy have been measured using the reflection Z-scan technique at above-bandgap energy. The nonlinear refractive index and nonlinear absorption index of the InAs/GaAs quantum dots were determined for wavelengths from 740 to 777 nm. The measured results are compared with the nonlinear refractive response of several typical III-V group semiconductor materials. The corresponding mechanisms responsible for the large nonlinear response are discussed.
Resumo:
Based oil rare equations of semiconductor laser, a symbolically-defined model for optical transmission system performance evaluation and network characterization in both time- and frequency domains is presented. The steady-state and small-signal characteristics, such as current-photon density curve, current-voltage curve, and input impedance, call be predicted from this model. Two important dynamic characteristics, second-order harmonic distortion and two-tone third-order intermodulation products, are evaluated under different driving conditions. Experiments show that the simulated results agree well with the published data. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Nonlinear optical properties of silicon nanocrystals (nc-Si) embedded in SiO2 films are investigated using time-resolved four-wave mixing technique with a femtosecond laser. the off-resonant third-order nonlinear susceptibility chi((3)) is observed to be 1.3 x 10(-10) esu at 800 nm. The relaxation time of the film is fast as short as 50 fs. The off-resonant nonlinearity is predominantly electronic in origin and enhanced due to quantum confinement.
Resumo:
According to the research results reported in the past decades, it is well acknowledged that face recognition is not a trivial task. With the development of electronic devices, we are gradually revealing the secret of object recognition in the primate's visual cortex. Therefore, it is time to reconsider face recognition by using biologically inspired features. In this paper, we represent face images by utilizing the C1 units, which correspond to complex cells in the visual cortex, and pool over S1 units by using a maximum operation to reserve only the maximum response of each local area of S1 units. The new representation is termed C1 Face. Because C1 Face is naturally a third-order tensor (or a three dimensional array), we propose three-way discriminative locality alignment (TWDLA), an extension of the discriminative locality alignment, which is a top-level discriminate manifold learning-based subspace learning algorithm. TWDLA has the following advantages: (1) it takes third-order tensors as input directly so the structure information can be well preserved; (2) it models the local geometry over every modality of the input tensors so the spatial relations of input tensors within a class can be preserved; (3) it maximizes the margin between a tensor and tensors from other classes over each modality so it performs well for recognition tasks and (4) it has no under sampling problem. Extensive experiments on YALE and FERET datasets show (1) the proposed C1Face representation can better represent face images than raw pixels and (2) TWDLA can duly preserve both the local geometry and the discriminative information over every modality for recognition.
Resumo:
An asymmetric MOSFET-C band-pass filter(BPF)with on chip charge pump auto-tuning is presented.It is implemented in UMC (United Manufacturing Corporation)0.18μm CMOS process technology. The filter system with auto-tuning uses a master-slave technique for continuous tuning in which the charge pump OUtputs 2.663 V, much higher than the power supply voltage, to improve the linearity of the filter. The main filter with third order low-pass and second order high-pass properties is an asymmetric band-pass filter with bandwidth of 2.730-5.340 MHz. The in-band third order harmonic input intercept point(HP3) is 16.621 dBm,wim 50 Ω as the source impedance. The input referred noise iS about 47.455μVrms. The main filter dissipates 3.528 mW while the auto-tuning system dissipates 2.412 mW from a 1.8 V power supply. The filter with the auto-tuning system occupies 0.592 mm~2 and it can be utilized in GPS (global positioning system)and Bluetooth systems.
Resumo:
A 5.2 GHz variable-gain amplifier (VGA) and a power amplifier (PA) driver are designed for WLAN IEEE 802.11a monolithic RFIC. The VGA and the PA driver are implemented in a 50 GHz 0.35 μm SiGe BiCMOS technology and occupy 1.12×1.25 mm~2 die area. The VGA with effective temperature compensation is controlled by 5 bits and has a gain range of 34 dB. The PA driver with tuned loads utilizes a differential input, single-ended output topology, and the tuned loads resonate at 5.2 GHz. The maximum overall gain of the VGA and the PA driver is 29 dB with the output third-order intercept point (OIP3) of 11 dBm. The gain drift over the temperature varying from -30 to 85℃ converges within±3 dB. The total current consumption is 45 mA under a 2.85 V power supply.
Resumo:
The nonlinear optical properties of Al-doped nc-Si-SiO_2 composite films have been investigated using the time-resolved four-wave mixing technique with a femtosecond laser. The off-resonant third-order nonlinear susceptibility is observed to be 1.0 × 10~(-10) esu at 800nm. The relaxation time of the optical nonlinearity in the films is as short as 60fs. The optical nonlinearity is enhanced due to the quantum confinement of electrons in Si nanocrystals embedded in the SiO_2 films. The enhanced optical nonlinearity does not originate from Al dopant because there are no Al clusters in the films.
Resumo:
A third-order weighted essentially nonoscillatory and non-free-parameter difference scheme magnetohydrodynamic solver has been established to investigate the mechanisms of magnetohydrodynamics controlling separation induced by an oblique shock wave impinging on a flat plate. The effects of magnetohydrodynamic interaction-zone location on the separation point, reattachment point, separation-bubble size, and boundary-layer velocity profiles are analyzed. The results show that there exists a best location for the magnetohydrodynamic zone to be applied, where the separation point is delayed the farthest, and the separation bubble is decreased up to about 50% in size compared to the case without magnetohydrodynamic control, which demonstrated the promising of magnetohydrodynamics suppressing the separation induced by shock-wave/boundary-layer interactions.