1000 resultados para Thiophene adsorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesion of Thiobacillus ferrooxidans to pyrite and chalcopyrite in relation to its importance in bioleaching and bioflotation has been studied. Electrokinetic studies as well as FT-IR spectra suggest that the surface chemistry of Thiobacillus ferrooxidans depends on bacterial growth conditions. Sulfur-,Pyrite- and chalcopyrite-grown Thiobacillus ferrooxidans were found to be relatively more hydrophobic. The altered surface chemistry of Thiobacillus ferrooxidans was due to secretion of newer and specific proteinaceous compounds. The adsorption density corresponds to a monolayer coverage in a horizontal orientation of the cells. The xanthate flotation of pyrite in presence of Thiobacillus ferrooxidans is strongly depressed where as the cells have insignificant effect on chalcopyrite flotation. This study demonstrate that: (a)Thiobacillus ferrooxidans cells can be used for selective flotation of chalcopyrite from pyrite and importantly at natural pH values. (b)Sulfur-grown cells exhibits higher leaching kinetics than ferrous ion-grown cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inverse suspension polymerization was carried out to synthesize poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) crosslinked with ethylene glycol dimethacrylate (EGDMA). The equilibrium swelling capacities of the SAPs, determined by swelling them in DI water, were found to vary with the acrylamide (AM) content. The SAPs were used to adsorb four cationic dyes (Acriflavine, Auramine-O, Azure-I and Pyronin-Y). The effect of AM content in the SAPs on the adsorption of the cationic dyes was investigated. Different initial concentrations of Azure-I were used with the same amount of the SAP to explore the effect of initial dye concentration on the adsorption. The effect of the adsorbent amount was investigated by taking different amounts of SAP with a fixed initial concentration of Acriflavine. The kinetics of the dye adsorption was modeled by a first order model and the equilibrium amount of the dye adsorbed, adsorption rate coefficients, removal efficiency and partition coefficients were determined. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrahigh-molecular-weight polyethylene (UHMWPE) is used as an articulating surface in total hip and knee joint replacement. In order to enhance long-term durability/wear resistance properties, UHMWPE-based polymer-ceramic hybrid composites are being developed. Surface properties such as wettability and protein adsorption alter with reinforcement or with change in surface chemistry. From this perspective, the wettability and protein adsorption behavior of compression-molded UHMWPE-hydroxyapatite (HA)-aluminum oxide (Al2O3)-carbon nanotube (CNT) composites were analyzed in conjunction with surface roughness. The combined effect of Al2O3 and CNT shows enhancement of the contact angle by similar to 37A degrees compared with the surface of the UHMWPE matrix reinforced with HA. In reference to unreinforced UHMWPE, protein adsorption density also increased by similar to 230% for 2 wt.%HA-5 wt.%Al2O3-2 wt.%CNT addition to UHMWPE. An important conclusion is that the polar and dispersion components of the surface free energy play a significant role in wetting and protein adsorption than do the total free energy or chemistry of the surface. The results of this study have major implications for the biocompatibility of these newly developed biocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new solution processable, low band gap donor-acceptor (D-A) copolymers (P1 and P2) comprising a cyclopentac] thiophene (CPT) based oligomers as donors and benzoc]1,2,5] selenadiazole (BDS) and 2-dodecyl1,2,3]-benzotriazole (BTAz) as acceptors were synthesized and characterized and their field effect transistor properties were studied. The internal charge transfer interaction between the electron-donating CPT based oligothiophene and the electron-accepting BDS or BTAz unit effectively reduces the band gap in polymers to 1.3 and 1.66 eV with low lying highest occupied molecular orbital (HOMO). The absorption spectrum of P1 was found to be more red shifted than that of P2 because of incorporation of the more electron-withdrawing BDS unit. The color of neutral P1 was found to be green in both solution and film states with two major bands in the absorption spectra; however, neutral P2 revealed one dominant absorption exhibiting red color in both solution and film state which could be attributed to the less electron-withdrawing effect of the BTAz unit. The polymers were further characterized by GPC, TGA, DSC and cyclic voltammetry. P1 and P2 exhibited charge carrier mobilities as high as 9 x 10(-3) cm(2) V-1 s(-1) and 2.56 x 10(-3) cm 2 V-1 s(-1), respectively with the current on/off ratio (I-on/I-off) in the order of 10(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superabsorbent polymers (SAPs) of acrylic acid, sodium acrylate, and acrylamide (AM), crosslinked with ethylene glycol dimethacrylate, were synthesized by inverse suspension polymerization. The equilibrium swelling capacities of the SAPs were determined and these decreased with increasing AM content. The adsorption of the two cationic dyes, methylene blue and rhodamine 6G, on the dry as well as equilibrium swollen SAPs was investigated. The amount of the dye adsorbed at equilibrium per unit weight of the SAPs and the rate constants of adsorption were determined. The amount of the dye adsorbed at equilibrium by the SAPs decreased with increasing mol % of AM in the SAPs. The amount of the dye adsorbed at equilibrium was almost equal for the dry and equilibrium swollen SAPs. However, the equilibrium swollen SAPs adsorbed dyes at a higher rate than the dry SAPs. The higher rate of adsorption was attributed to the availability of all the anionic groups present in the fully elongated conformation of the SAPs in the equilibrium swollen state. The effect of initial dye concentration on the adsorption was also investigated and the adsorption was described by Langmuir adsorption isotherms. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new two-step synthesis of ZrO2-MCM nanocomposites using the gel combustion technique was accomplished; the resulting material had a high-surface area and showed very high adsorption activity. The deposition of 25 nm ZrO2 particles over MCM was achieved using gel combustion technique with glycine as a fuel, and the formation of nanocomposites was confirmed using transmission electron microscopy. The composites were also characterized by XRD, SEM, FTIR and N2 adsorption-desorption analysis. The nanocomposites were tested for the adsorption of cationic dyes. High rates of adsorption and large dye uptake were observed over the nanocomposites. The rate of adsorption over the nanocomposites was higher than that observed for physical ZrO2-MCM mixtures and commercial activated carbon. The nanocomposite with 10 wt % ZrO2 showed the highest rate of adsorption owing to the synergistic effects of ZrO2 surface groups, smaller particle size, fine dispersion and high-surface area of the composite. (c) 2012 American Institute of Chemical Engineers AIChE J, 58: 29872996, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel random copolymers containing dithienylcyclopentadienone, thiophene and benzothiadiazole were synthesized and photovoltaic properties of these materials were evaluated. Thermal, structural, optical and electrochemical characterization of the synthesized copolymers was carried out. These thermally stable copolymers are solution processable unlike the homopolymer. The absorption spectra indicated that with the incorporation of alkyl chains in the thiophene moiety, the onset of absorption increases and hence band gap decreases (1.47 eV to 1.41 eV). Bulk heterojunction solar cells were fabricated with the blend of copolymer and phenyl-C61-butyric acid methyl ester (PCBM) as the active material and device parameters were extracted. The copolymer consists of alkyl thiophene exhibit higher open circuit voltage than the copolymer consisting of thiophene moiety. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a view towards optimizing gas storage and separation in crystalline and disordered nanoporous carbon-based materials, we use ab initio density functional theory calculations to explore the effect of chemical functionalization on gas binding to exposed edges within model carbon nanostructures. We test the geometry, energetics, and charge distribution of in-plane and out-of-plane binding of CO2 and CH4 to model zigzag graphene nanoribbons edge-functionalized with COOH, OH, NH2, H2PO3, NO2, and CH3. Although different choices for the exchange-correlation functional lead to a spread of values for the binding energy, trends across the functional groups are largely preserved for each choice, as are the final orientations of the adsorbed gas molecules. We find binding of CO2 to exceed that of CH4 by roughly a factor of two. However, the two gases follow very similar trends with changes in the attached functional group, despite different molecular symmetries. Our results indicate that the presence of NH2, H2PO3, NO2, and COOH functional groups can significantly enhance gas binding, making the edges potentially viable binding sites in materials with high concentrations of edge carbons. To first order, in-plane binding strength correlates with the larger permanent and induced dipole moments on these groups. Implications for tailoring carbon structures for increased gas uptake and improved CO2/CH4 selectivity are discussed. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4736568]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of adsorption characteristics of activated carbon (porous material) in the temperature range from 5 to 20 K is essential when used in cryosorption pumps for nuclear fusion applications. However, such experimental data are very scarce in the literature, especially below 77 K. So, an experimental system is designed and fabricated to measure the adsorption characteristics of porous materials under variable cryogenic temperatures (from 5 K to 100 K). This is based on the commercially available micropore-analyser coupled to a closed helium cycle two-stage Gifford McMahon (GM) Cryocooler, which allows the sample to be cooled to 4.2 K. The sample port is coupled to the Cryocooler through a heat switch, which isolates this port from the cold head of the Cryocooler. By this, the sample temperature can now be varied without affecting the Cryocooler. The setup enables adsorption studies in the pressure range from atmospheric down to 10(-4) Pa. The paper describes the details of the experimental setup and presents the results of adsorption studies at 77 K for activated carbon with nitrogen as adsorbate. The system integration is now completed to enable adsorption studies at 4.2 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of ab initio and classical Monte Carlo simulations is used to investigate the effects of functional groups on methane binding. Using Moller-Plesset (MP2) calculations, we obtain the binding energies for benzene functionalized with NH2, OH, CH3, COOH, and H2PO3 and identify the methane binding sites. In all cases, the preferred binding sites are located above the benzene plane in the vicinity of the benzene carbon atom attached to the functional group. Functional groups enhance methane binding relative to benzene (-6.39 kJ/mol), with the largest enhancement observed for H2PO3 (-8.37 kJ/mol) followed by COOH and CH3 (-7.77 kJ/mol). Adsorption isotherms are obtained for edge-functionalized bilayer graphene nanoribbons using grand canonical Monte Carlo simulations with a five-site methane model. Adsorbed excess and heats of adsorption for pressures up to 40 bar and 298 K are obtained with functional group concentrations ranging from 3.125 to 6.25 mol 96 for graphene edges functionalized with OH, NH2, and COOH. The functional groups are found to act as preferred adsorption sites, and in the case of COOH the local methane density in the vicinity of the functional group is found to exceed that of bare graphene. The largest enhancement of 44.5% in the methane excess adsorbed is observed for COOH-functionalized nanoribbons when compared to H terminated ribbons. The corresponding enhancements for OH- and NH2-functionalized ribbons are 10.5% and 3.7%, respectively. The excess adsorption across functional groups reflects the trends observed in the binding energies from MP2 calculations. Our study reveals that specific site functionalization can have a significant effect on the local adsorption characteristics and can be used as a design strategy to tailor materials with enhanced methane storage capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cationic monomer 2-(methacryloyloxy)ethyl]trimethylammonium chloride was polymerized using N,N'-methylenebisacrylamide as the crosslinker to obtain a cationic superabsorbent polymer (SAP). This SAP was characterized by Fourier transform-infrared spectroscopy, and the equilibrium swelling capacity was determined by swelling in water. The SAP was subjected to cyclic swelling/deswelling in water and NaCl solution. The conductivity of the swelling medium was monitored during the swelling/deswelling and was related to the swelling/deswelling characteristics of the SAP. The adsorption of five anionic dyes of different classes on the SAP was carried out and was found to follow the first-order kinetics. The Langmuir adsorption isotherms were found to fit the equilibrium adsorption data. The dye adsorption capacity of the SAP synthesized in this study was higher than that obtained for other hydrogels reported in the literature. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat of adsorption of methane, ethane, carbon dioxide, R-507a and R-134a on several specimens of microporous activated carbons is derived from experimental adsorption data fitted to the Dubinin-Astakhov equation. These adsorption results are compared with literature data obtained from calorimetric measurements and from the pressure-temperature relation during isosteric heating/cooling. Because the adsorbed phase volume plays an important role, its dependence on temperature and pressure needs to be correctly assessed. In addition, for super-critical gas adsorption, the evaluation of the pseudo-saturation pressure also needs a judicious treatment. Based on the evaluation of carbon dioxide adsorption, it can be seen that sub-critical and super-critical adsorption show different temperature dependences of the isosteric heat of adsorption. The temperature and loading dependence of this property needs to be taken into account while designing practical systems. Some practical implications of these findings are enumerated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (Delta G (o) = -25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85-100 %) on dilution with 50-80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have synthesized a series of TDPP derivatives with different alkyl groups such as n-hexyl (-C6H13) 3a, 2-ethylhexyl (-(2-C2H5)C6H12) 3b, triethylene glycol mono methyl ether (-(CH2CH2O)(3c)H-3, TEG) 3c, and octadodecyl (-(8-C8H17)C12H22) 3d. N,N dialkylation of Othiophene-diketopyrrolopyrrole (TDPP, 1) strongly influences its solubility, solid state packing, and structural order. These materials allow us to explicitly study the influence of alkyl chain on solid state packing and photophysical properties. TDPP moiety containing two different alkyl groups 3e (TEG and 2-ethylhexyl) and 3f (TEG and n-hexyl) were synthesized for the first time. The absorption spectra of all derivatives exhibited a red shift in solid state when compared to their solution spectra. The type of alkyl chains leads to change in the optical band gaps in solid state. The fluorescence study reveals that TDPP derivatives have strong pi-pi interaction in the solid state and the extent of bathochromic shift is due to combination of intramolecular interaction and formation of aggregates in solid state. This behavior strongly depends on the nature of alkyl chain. The presence of strong C-H center dot center dot center dot O inter chain interactions and CH-pi interactions in solid state exhibits strong influence on the photophysical properties of TDPP chromophore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low thermal diffusivity of adsorption beds induces a large thermal gradient across cylindrical adsorbers used in adsorption cooling cycles. This reduces the concentration difference across which a thermal compressor operates. Slow adsorption kinetics in conjunction with the void volume effect further diminishes throughputs from those adsorption thermal compressors. The problem can be partially alleviated by increasing the desorption temperatures. The theme of this paper is the determination the minimum desorption temperature required for a given set of evaporating/condensing temperatures for an activated carbon + HFC 134a adsorption cooler. The calculation scheme is validated from experimental data. Results from a parametric analysis covering a range of evaporating/condensing/desorption temperatures are presented. It is found that the overall uptake efficiency and Carnot COP characterize these bounds. A design methodology for adsorber sizing is evolved. (c) 2012 Elsevier Ltd. All rights reserved.