946 resultados para TO-NOISE RATIO
Resumo:
Electrodeposition of thin copper layer was carried out on titanium wires in acidic sulphate bath. The influence of titanium surface preparation, cathodic current density, copper sulphate and sulphuric acid concentrations, electrical charge density and stirring of the solution on the adhesion of the electrodeposits was studied using the Taguchi statistical method. A L(16) orthogonal array with the six factors of control at two levels each and three interactions was employed. The analysis of variance of the mean adhesion response and signal-to-noise ratio showed the great influence of cathodic current density on adhesion. on the contrary, the other factors as well as the three investigated interactions revealed low or no significant effect. From this study optimized electrolysis conditions were defined. The copper electrocoating improved the electrical conductivity of the titanium wire. This shows that copper electrocoated titanium wires could be employed for both electrical purpose and mechanical reinforcement in superconducting magnets. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The most popular algorithms for blind equalization are the constant-modulus algorithm (CMA) and the Shalvi-Weinstein algorithm (SWA). It is well-known that SWA presents a higher convergence rate than CMA. at the expense of higher computational complexity. If the forgetting factor is not sufficiently close to one, if the initialization is distant from the optimal solution, or if the signal-to-noise ratio is low, SWA can converge to undesirable local minima or even diverge. In this paper, we show that divergence can be caused by an inconsistency in the nonlinear estimate of the transmitted signal. or (when the algorithm is implemented in finite precision) by the loss of positiveness of the estimate of the autocorrelation matrix, or by a combination of both. In order to avoid the first cause of divergence, we propose a dual-mode SWA. In the first mode of operation. the new algorithm works as SWA; in the second mode, it rejects inconsistent estimates of the transmitted signal. Assuming the persistence of excitation condition, we present a deterministic stability analysis of the new algorithm. To avoid the second cause of divergence, we propose a dual-mode lattice SWA, which is stable even in finite-precision arithmetic, and has a computational complexity that increases linearly with the number of adjustable equalizer coefficients. The good performance of the proposed algorithms is confirmed through numerical simulations.
Resumo:
Chlorpheniramine maleate (CLOR) enantiomers were quantified by ultraviolet spectroscopy and partial least squares regression. The CLOR enantiomers were prepared as inclusion complexes with beta-cyclodextrin and 1-butanol with mole fractions in the range from 50 to 100%. For the multivariate calibration the outliers were detected and excluded and variable selection was performed by interval partial least squares and a genetic algorithm. Figures of merit showed results for accuracy of 3.63 and 2.83% (S)-CLOR for root mean square errors of calibration and prediction, respectively. The ellipse confidence region included the point for the intercept and the slope of 1 and 0, respectively. Precision and analytical sensitivity were 0.57 and 0.50% (S)-CLOR, respectively. The sensitivity, selectivity, adjustment, and signal-to-noise ratio were also determined. The model was validated by a paired t test with the results obtained by high-performance liquid chromatography proposed by the European pharmacopoeia and circular dichroism spectroscopy. The results showed there was no significant difference between the methods at the 95% confidence level, indicating that the proposed method can be used as an alternative to standard procedures for chiral analysis.
Resumo:
This study examined the test performance of distortion product otoacoustic emissions (DPOAEs) when used as a screening tool in the school setting. A total of 1003 children (mean age 6.2 years, SD = 0.4) were tested with pure-tone screening, tympanometry, and DPOAE assessment. Optimal DPOAE test performance was determined in comparison with pure-tone screening results using clinical decision analysis. The results showed hit rates of 0.86, 0.89, and 0.90, and false alarm rates of 0.52, 0.19, and 0.22 for criterion signal-to-noise ratio (SNR) values of 4, 5, and 11 dB at 1.1, 1.9, and 3.8 kHz respectively. DPOAE test performance was compromised at 1.1 kHz. In view of the different test performance characteristics across the frequencies, the use of a fixed SNR as a pass criterion for all frequencies in DPOAE assessments is not recommended. When compared to pure tone plus tympanometry results, the DPOAEs showed deterioration in test performance, suggesting that the use of DPOAEs alone might miss children with subtle middle ear dysfunction. However, when the results of a test protocol, which incorporates both DPOAEs and tympanometry, were used in comparison with the gold standard of pure-tone screening plus tympanometry, test performance was enhanced. In view of its high performance, the use of a protocol that includes both DPOAEs and tympanometry holds promise as a useful tool in the hearing screening of schoolchildren, including difficult-to-test children.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
We have measured the spatial diffusion of atoms in a three-dimensional sigma(+)-sigma(-) optical molasses over twenty milliseconds timescale, starting from the initial interaction of the atoms with the molasses. We find that the diffusion constants agree well with a linear model for these short time scales and also compare favourably to other studies of diffusion made over longer time scales. These measurements enable us to quantify the detection method known as freezing molasses. We discuss this method, for detecting and measuring the momentum distribution of cold atoms, which relies on the slow diffusion of atoms in optical molasses to produce a freeze-frame of the spatial distribution of the atoms. This method enables a longer interrogation interval, providing a greatly increased signal-to-noise ratio. (C) 1998 Elsevier Science B.V.
Resumo:
Great potential has recently been demonstrated for the application of transient evoked otoacoustic emissions (TEOAEs) in screening the hearing of school-aged children. The present study aimed to describe the range of TEOAE values obtained from a large cohort of 6-year-old children in school settings. Results indicated significant sex and ear asymmetry effects on signal-to-noise ratio, response, whole wave reproducibility, band reproducibility and noise levels. A prior history of ear infections was also shown to influence response level, whole wave reproducibility and band reproducibility. The sex, ear and history specific normative data tables derived may contribute to future improvements in the accuracy of hearing screening for 6-year-old school children.
Resumo:
In this article we report on progress in high magnetic field MRI at the University of Florida in support of our new 750MHz wide bore and 11.7T/40cm MR instruments. The primary emphasis is on the associated rf technology required, particularly high frequency volume and phased array coils. Preliminary imaging results at 750MHz are presented. Our results imply that the pursuit of even higher fields seems warranted. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Conducting dielectric samples are often used in high-resolution experiments at high held. It is shown that significant amplitude and phase distortions of the RF magnetic field may result from perturbations caused by such samples. Theoretical analyses demonstrate the spatial variation of the RF field amplitude and phase across the sample, and comparisons of the effect are made for a variety of sample properties and operating field strengths. Although the effect is highly nonlinear, it tends to increase with increasing field strength, permittivity, conductivity, and sample size. There are cases, however, in which increasing the conductivity of the sample improves the homogeneity of the amplitude of the RF field across the sample at the expense of distorted RF phase. It is important that the perturbation effects be calculated for the experimental conditions used, as they have the potential to reduce the signal-to-noise ratio of NMR experiments and may increase the generation of spurious coherences. The effect of RF-coil geometry on the coherences is also modeled, with the use of homogeneous resonators such as the birdcage design being preferred, Recommendations are made concerning methods of reducing sample-induced perturbations. Experimental high-field imaging and high-resolution studies demonstrate the effect. (C) 1997 Academic Press.
Resumo:
As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Inhomogeneities in the spatial distribution of the excitatory Radio Frequency (RF) field, are still a dominant source of artifacts and loss of signal to noise ratio in MR imaging experiments, A number of strategies have been proposed to quantify this distribution, However, in this technical note we present a relatively simple MR imaging procedure which can be used to visualise RF inhomogeneities directly either by means of the magnitude or the phase of an image. To visualise the RF field distribution in both the inner and outer volumes of the coil, we have performed experiments in which the entire coil is submerged in a non-conducting fluid, To the best of our knowledge this strategy has not been used previously in order to evaluate coil performance, Finally, we demonstrate that the method is sensitive enough to reveal the effects of the sample properties on the effective RF wavelength of the transmitted field. (C) 1997 Elsevier Science Inc.
Resumo:
Functional MRI (fMRI) data often have low signal-to-noise-ratio (SNR) and are contaminated by strong interference from other physiological sources. A promising tool for extracting signals, even under low SNR conditions, is blind source separation (BSS), or independent component analysis (ICA). BSS is based on the assumption that the detected signals are a mixture of a number of independent source signals that are linearly combined via an unknown mixing matrix. BSS seeks to determine the mixing matrix to recover the source signals based on principles of statistical independence. In most cases, extraction of all sources is unnecessary; instead, a priori information can be applied to extract only the signal of interest. Herein we propose an algorithm based on a variation of ICA, called Dependent Component Analysis (DCA), where the signal of interest is extracted using a time delay obtained from an autocorrelation analysis. We applied such method to inspect functional Magnetic Resonance Imaging (fMRI) data, aiming to find the hemodynamic response that follows neuronal activation from an auditory stimulation, in human subjects. The method localized a significant signal modulation in cortical regions corresponding to the primary auditory cortex. The results obtained by DCA were also compared to those of the General Linear Model (GLM), which is the most widely used method to analyze fMRI datasets.
Resumo:
The aim of the present study was to investigate the effect of high-pass filtering on TEOAE obtained from 2-month-old infants as a function of filter cut-off frequency, activity states and pass/fail status of infants. Two experiments were performed. In Experiment 1, 100 2-month-old infants (200 ears) in five activity states (asleep, awake but peaceful, sucking a pacifier, feeding, restless) were tested by use of TEOAE technology. Five different filter conditions were applied to the TEOAE responses post hoc. The filter conditions were set at 781 Hz (default setting), 1.0, 1.2, 1.4 and 1.6 kHz. Results from this experiment showed that TEOAE parameters, such as whole-wave reproducibility (WR) and signal-to-noise ratio (SNR) at 0.8 kHz and 1.6 kHz, changed as a function of the cut-off frequency. The findings suggest that the 1.6 kHz and 1.2 kHz filter conditions are optimal for WR and SNR pass/fail criteria, respectively. Although all infant recordings appeared to benefit from the filtering, infants in the noisy states seemed to benefit the most. In Experiment 2, the high-pass filtering technique was applied to 23 infants (35 ears) who apparently failed the TEOAE tests on initial screening but were subsequently awarded a pass status based on the results from a follow-up auditory brainstem response (ABR) assessment. The findings showed a significant decrease in noise contamination of the TEOAE with a corresponding significant increase in WR. With high-pass filtering at 1.6 kHz, 21/35 ears could be reclassified into the pass category.
Resumo:
Objectives: (1) To establish test performance measures for Transient Evoked Otoacoustic Emission testing of 6-year-old children in a school setting; (2) To investigate whether Transient Evoked Otoacoustic Emission testing provides a more accurate and effective alternative to a pure tone screening plus tympanometry protocol. Methods: Pure tone screening, tympanometry and transient evoked otoacoustic emission data were collected from 940 subjects (1880 ears), with a mean age of 6.2 years. Subjects were tested in non-sound-treated rooms within 22 schools. Receiver operating characteristics curves along with specificity, sensitivity, accuracy and efficiency values were determined for a variety of transient evoked otoacoustic emission/pure tone screening/tympanometry comparisons. Results: The Transient Evoked Otoacoustic Emission failure rate for the group was 20.3%. The failure rate for pure tone screening was found to be 8.9%, whilst 18.6% of subjects failed a protocol consisting of combined pure tone screening and tympanometry results. In essence, findings from the comparison of overall Transient Evoked Otoacoustic Emission pass/fail with overall pure tone screening pass/fail suggested that use of a modified Rhode Island Hearing Assessment Project criterion would result in a very high probability that a child with a pass result has normal hearing (true negative). However, the hit rate was only moderate. Selection of a signal-to-noise ratio (SNR) criterion set at greater than or equal to 1 dB appeared to provide the best test performance measures for the range of SNR values investigated. Test performance measures generally declined when tympanometry results were included, with the exception of lower false alarm rates and higher positive predictive values. The exclusion of low frequency data from the Transient Evoked Otoacoustic Emission SNR versus pure tone screening analysis resulted in improved performance measures. Conclusions: The present study poses several implications for the clinical implementation of Transient Evoked Otoacoustic Emission screening for entry level school children. Transient Evoked Otoacoustic Emission pass/fail criteria will require revision. The findings of the current investigation offer support to the possible replacement of pure tone screening with Transient Evoked Otoacoustic Emission testing for 6-year-old children. However, they do not suggest the replacement of the pure tone screening plus tympanometry battery. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Evoked otoacoustic emissions have demonstrated potential for application in the community-based hearing screening of paediatric populations. Distortion-product otoacoustic emissions (DPOAEs), as opposed to transient evoked otoacoustic emissions (TEOAEs), have not been extensively researched in this regard. The current study aimed to describe the range of DPOAE values obtained in a large cohort (1576 ears) of 6-year-old children in school settings and to examine possible ear asymmetry, gender and history of ear infection effects on the data. Results indicated a variety of significant effects, particularly in the high frequencies, for DPOAE signal-to-noise ratio. The measurement parameter, DPOAE amplitude (DP-amp), was found to display potentially less clinical applicability due to large standard deviation values. Use of descriptive normative data, as derived in the present investigation, may contribute toward future improvements in the hearing screening of 6-year-old schoolchildren