932 resultados para THZ RANGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid oxide galvanic cells using CaO-ZrO2 and CaO-ZrO2 in combination with YO1.5-ThO2 as electrolyte were used to determine the free energy of formation of hercynite from 750–1600°C. The formation reaction is 2Fe(s,1) + O2(g) + Al2O3(α) = 2FeO.Al2O3(s)for which ΔG° = − 139,790 + 32.83T (±300) cals. (750–1536°C) ΔG° = − 146,390 + 36.48T (±300) cals. (1536–1700°C)These measurements can be used to resolve the discrepancies that exist in published thermochemical data, and provide an accurate oxygen potential standard for calibrating and assessing the performance of oxygen probes under steelmaking conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From electromotive force (emf) measurements using solid oxide galvanic cells incorporating ZrOz-CaO and ThOz-YO~.s electrolytes, the chemical potentials of oxygen over the systems Fe + FeCrzO 4 + Cr20 ~ and Fe + FeV204 + V203 were calculated. The values may be represented by the equations: 2Fe(s, I) + Oz(g) + 2Cr2Oa(s) -- 2FeCr204 (s)Akto2 = - 151,400 + 34.7T (• cal= -633,400 + 145.5T(• J (750 to 1536~ A~tO2 = -158,000 + 38.4T(• cal= -661,000 + 160.5T(*1250) J (1536 to 1700~2Fe (s, I) + O2 (g) + 2V203 (s) -- 2FeV204 (s) A/~Oz = - 138,000 + 29.8T(+300) cal= - 577,500 + 124.7T (• J (750 to 1536~A/IO2 = -144,600 + 33.45T(-300) cal = -605,100 + 140.0T(~-1250) J (1536 to 1700~At the oxygen potentials corresponding to Fe + FeCrzO a + Cr203 equilibria, the electronic contribution to the conductivity of ZrO2-CaO electrolyte was found to affect the measured emf. Application of a small 60 cycle A.C. voltage with an amplitude of 50 mv across the cell terminals reduced the time required to attain equilibrium at temperatures between 750 to 9500C by approximately a factor of two. The second law entropy of iron chromite obtained in this study is in good agreement with that calculated from thermal data. The entropies of formation of these spinel phases from the component oxides can be correlated to cation distribution and crystal field theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature ranges of thermal and athermal deformation behaviour of nickel are identified by employing the temperature-dependence of flow-stress and strain-rate cycling data. The results are used to present a unified view of dislocation mechanisms of glide encompassing the two thermally activated and the intermediate athermal regimes of plastic flow.In the low-temperature thermally activated region (<250 K) the strain rate is found to be controlled by the repulsive intersection of glide and forest dislocations, in accordance with current ideas. The athermal stress in this region can be attributed mainly to the presence of strong attractive junctions which are overcome by means of Orowan bowing, a small contribution also coming from the elastic interactions between dislocations. The values of activation area and activation energy obtained in the high-temperature region (> 750 K) negate the operation of a diffusion-controlled mechanism. Instead, the data support a thermal activation model involving unzipping of the attractive junctions. The internal (long-range) stress contribution here results solely from the elastic interactions between dislocations. This view concerning the high-temperature plastic flow is further supported by the observation that the Cottrell–Stokes law is obeyed over large strains in the range 750–1200 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical and computational investigations of nucleation have been plagued by the sensitivity of the phase diagram to the range of the interaction potential. As the surface tension depends strongly on the range of interaction potential and as the classical nucleation theory (CNT) predicts the free energy barrier to be directly proportional to the cube of the surface tension, one expects a strong sensitivity of nucleation barrier to the range of the potential; however, CNT leaves many aspects unexplored. We find for gas-liquid nucleation in Lennard-Jones system that on increasing the range of interaction the kinetic spinodal (KS) (where the mechanism of nucleation changes from activated to barrierless) shifts deeper into the metastable region. Therefore the system remains metastable for larger value of supersaturation and this allows one to explore the high metastable region without encountering the KS. On increasing the range of interaction, both the critical cluster size and pre-critical minima in the free energy surface of kth largest cluster, at respective kinetic spinodals, shift towards smaller cluster size. In order to separate surface tension contribution to the increase in the barrier from other non-trivial factors, we introduce a new scaling form for surface tension and use it to capture both the temperature and the interaction range dependence of surface tension. Surprisingly, we find only a weak non-trivial contribution from other factors to the free energy barrier of nucleation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3685835]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the bipartite entanglement of strongly correlated systems using exact diagonalization techniques. In particular, we examine how the entanglement changes in the presence of long-range interactions by studying the Pariser-Parr-Pople model with long-range interactions. We compare the results for this model with those obtained for the Hubbard and Heisenberg models with short-range interactions. This study helps us to understand why the density matrix renormalization group (DMRG) technique is so successful even in the presence of long-range interactions. To better understand the behavior of long-range interactions and why the DMRG works well with it, we study the entanglement spectrum of the ground state and a few excited states of finite chains. We also investigate if the symmetry properties of a state vector have any significance in relation to its entanglement. Finally, we make an interesting observation on the entanglement profiles of different states (across the energy spectrum) in comparison with the corresponding profile of the density of states. We use isotropic chains and a molecule with non-Abelian symmetry for these numerical investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of long-range heteronuclear couplings, in association with 1H1H scalar couplings and NOE restraints, has acquired growing importance for the determination of the relative stereochemistry, and structural and conformational information of organic and biological molecules. However, the routine use of such couplings is hindered by the inherent difficulties in their measurement. Prior to the advancement in experimental techniques, both long-range homo- and heteronuclear scalar couplings were not easily accessible, especially for very large molecules. The development of a large number of multidimensional NMR experimental methodologies has alleviated the complications associated with the measurement of couplings of smaller strengths. Subsequent application of these methods and the utilization of determined J-couplings for structure calculations have revolutionized this area of research. Problems in organic, inorganic and biophysical chemistry have also been solved by utilizing the short- and long-range heteronuclear couplings. In this minireview, we discuss the advantages and limitations of a number of experimental techniques reported in recent times for the measurement of long-range heteronuclear couplings and a few selected applications of such couplings. This includes the study of medium- to larger-sized molecules in a variety of applications, especially in the study of hydrogen bonding in biological systems. The utilization of these couplings in conjunction with theoretical calculations to arrive at conclusions on the hyperconjugation, configurational analysis and the effect of the electronegativity of the substituents is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focuses on the design of torsional microelectromechanical systems (MEMS) varactors to achieve highdynamic range of capacitances. MEMS varactors fabricated through the polyMUMPS process are characterized at low and high frequencies for their capacitance-voltage characteristics and electrical parasitics. The effect of parasitic capacitances on tuning ratio is studied and an equivalent circuit is developed. Two variants of torsional varactors that help to improve the dynamic range of torsional varactors despite the parasitics are proposed and characterized. A tuning ratio of 1:8, which is the highest reported in literature, has been obtained. We also demonstrate through simulations that much higher tuning ratios can be obtained with the designs proposed. The designs and experimental results presented are relevant to CMOS fabrication processes that use low resistivity substrate. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JMM.11.1.013006]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the temperature and magnetic field dependence of the conductivity of multiwall carbon nanotube mat in the temperature range 1.4-150 K and in magnetic fields up to 10 T. It is observed that charge transport in this system is governed by Mott's variable-range hopping of three-dimensional type in the higher temperature range and two-dimensional type in the lower temperature range. Mott's various parameters, such as localization length, hopping length, hopping energy and density of states at the Fermi level are deduced from the variable-range hopping fit. The resistance of the sample decreases with the magnetic field applied in the direction of tube axis of the nanotubes. The magnetic field gives rise to delocalization of states with the well-known consequence of a decrease in Mott's T-0 parameter in variable-range hopping. The application of magnetic field lowers the crossover temperature at which three-dimensional variable-range hopping turns to two-dimensional variable-range hopping. The conductivity on the lower temperature side is governed by the weak localization giving rise to positive magnetoconductance. Finally, a magnetic field-temperature diagram is proposed showing different regions for different kinds of transport mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, the effect of longitudinal magnetic field on wave dispersion characteristics of equivalent continuum structure (ECS) of single-walled carbon nanotubes (SWCNT) embedded in elastic medium is studied. The ECS is modelled as an Euler-Bernoulli beam. The chemical bonds between a SWCNT and the elastic medium are assumed to be formed. The elastic matrix is described by Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation. The governing equations of motion for the ECS of SWCNT under a longitudinal magnetic field are derived by considering the Lorentz magnetic force obtained from Maxwell's relations within the frame work of nonlocal elasticity theory. The wave propagation analysis is performed using spectral analysis. The results obtained show that the velocity of flexural waves in SWCNTs increases with the increase of longitudinal magnetic field exerted on it in the frequency range: 0-20 THz. The present analysis also shows that the flexural wave dispersion in the ECS of SWCNT obtained by local and nonlocal elasticity theories differ. It is found that the nonlocality reduces the wave velocity irrespective of the presence of the magnetic field and does not influences it in the higher frequency region. Further it is found that the presence of elastic matrix introduces the frequency band gap in flexural wave mode. The band gap in the flexural wave is found to independent of strength of the longitudinal magnetic field. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a research knowledge gap for the dry wear data of nitride treated Stainless Steel in high temperature and high vacuum environment. In order to fill this gap, plasma nitriding was done on austenitic Stainless Steel type AISI 316LN (316LN SS) and dry sliding wear tests have been conducted at 25 degrees C, 200 degrees C and 400 degrees C in high vacuum of 1.6 x 10(-4) bar. The two different slider material (316LN SS and Colmonoy) and two different sliding speeds (0.0576 m/s and 0.167 m/s) have been used. The tribological parameters such as friction coefficient, wear mechanism and volume of metal loss have been evaluated. Scanning Electron Microscopy (SEM) was used to study the surface morphology of the worn pins and rings. Electronic balancing machine was used to record the mass of metal loss during wear tests. The 2D optical profilometer was used to measure the depth of the wear track. The Plasma Nitride treated 316LN SS rings (PN rings) exhibit excellent wear resistance against 316LN SS pin and Colmonoy pin at all temperatures. However, PN ring vs. Colmonoy pin Pair shows better wear resistance than PN ring vs. 316LN SS pin Pair at higher temperature. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present external memory data structures for efficiently answering range-aggregate queries. The range-aggregate problem is defined as follows: Given a set of weighted points in R-d, compute the aggregate of the weights of the points that lie inside a d-dimensional orthogonal query rectangle. The aggregates we consider in this paper include COUNT, sum, and MAX. First, we develop a structure for answering two-dimensional range-COUNT queries that uses O(N/B) disk blocks and answers a query in O(log(B) N) I/Os, where N is the number of input points and B is the disk block size. The structure can be extended to obtain a near-linear-size structure for answering range-sum queries using O(log(B) N) I/Os, and a linear-size structure for answering range-MAX queries in O(log(B)(2) N) I/Os. Our structures can be made dynamic and extended to higher dimensions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate electronic energy transfer between resonance states of 2 and 2.8 nm CdTe quantum dots in aqueous media using steady-state photoluminescence spectroscopy without using any external linker molecule. With increasing concentration of larger dots, there is subsequent quenching of luminescence in smaller dots accompanied by the enhancement of luminescence in larger dots. Our experimental evidence suggests that there is long-range resonance energy transfer among electronic excitations, specifically from the electronically confined states of the smaller dots to the higher excited states of the larger dots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential merit of laser-induced breakdown spectroscopy (LIBS) has been demonstrated for detection and quantification of trace pollutants trapped in snow/ice samples. In this technique, a high-power pulsed laser beam from Nd:YAG Laser (Model no. Surelite III-10, Continuum, Santa Clara, CA, USA) is focused on the surface of the target to generate plasma. The characteristic emissions from laser-generated plasma are collected and recorded by a fiber-coupled LIBS 2000+ (Ocean Optics, Santa Clara, CA, USA) spectrometer. The fingerprint of the constituents present in the sample is obtained by analyzing the spectral lines by using OOI LIBS software. Reliable detection of several elements like Zn, Al, Mg, Fe, Ca, C, N, H, and O in snow/ice samples collected from different locations (elevation) of Manali and several snow samples collected from the Greater Himalayan region (from a cold lab in Manali, India) in different months has been demonstrated. The calibration curve approach has been adopted for the quantitative analysis of these elements like Zn, Al, Fe, and Mg. Our results clearly demonstrate that the level of contamination is higher in those samples that were collected in the month of January in comparison to those collected in February and March.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider wavenumbers in in vacuo and fluid-filled isotropic and orthotropic shells. Using the Donnell-Mushtari (DM) theory we find compact and elegant asymptotic expansions for the wavenumbers in the intermediate frequency range, i.e., around the ring frequency. This frequency range corresponds to the frequencies where there is a rapid change in the values of bending wavenumbers and is found to exist in isotropic and orthotropic shells (in vacua and fluid-filled) for low circumferential orders n only. The same is first identified using the n=0 mode of an orthotropic shell. Following this, using the expression for the intermediate frequency, asymptotic expansions are found for other cases. Here, in order to get compact expansions we consider slight orthotropy (epsilon << 1) and light fluid loading (mu << 1). Thus, the orthotropy parameter epsilon and the fluid loading parameter mu are used as asymptotic parameters along with the non-dimensional thickness parameter beta. The methodology can be extended to any order of epsilon, only the expansions become unwieldy. The expansions are matched with the numerical solutions of the corresponding dispersion relation. The match is found to be good.