964 resultados para THERMAL RATE COEFFICIENT
Resumo:
The aim of this work was to determine the effect of temperature and heating rate on the densification of four leucite-based dental porcelains: two low-fusion (Dentsply Ceramco and Ivoclar) and two high-fusion commercial porcelains (Dentsply Ceramco). Porcelain powders were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), particle size distribution, helium picnometry, and by scanning electron microscopy. Test specimens were sintered from 600 to 1050 degrees C, with heating rates of 55 degrees C/min and 10 degrees C/min. The bulk density of the specimens was measured by the Archimedes method in water, and microstructures of fracture surfaces were analyzed by scanning electron microscopy (SEM). The results showed that densification of specimens increased with the increase in temperature. The increase in the heating rate had no effect on the densification of the porcelains studied. Both high-fusion materials and one of the low-fusing porcelains reached the maximum densification at a temperature that was 50 degrees C lower than that recommended by the manufactures. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The microwave and thermal cure processes for the epoxy-amine systems N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenyl methane (TGDDM) with diaminodiphenyl sulfone (DDS) and diaminodiphenyl methane (DDM) have been investigated. The DDS system was studied at a single cure temperature of 433 K and a single stoichiometry of 27 wt% and the DDM system was studied at two stoichiometries, 19 and 32 wt%, and a range temperatures between 373 and 413 K. The best values the kinetic rate parameters for the consumption of amines have been determined by a least squares curve Ft to a model for epoxy-amine cure. The activation energies for the rate parameters for the MY721/DDM system were determined as was the overall activation energy for the cure reaction which was found to be 62 kJ mol(-1). No evidence was found for any specific effect of the microwave radiation on the rate parameters, and the systems were both found to be characterized by a negative substitution effect. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
We determined the maximum sustained swimming speed (U-crit), and resting and maximum ventilation rates of the Antarctic fish Pagothenia borchgrevinki at five temperatures between -1degreesC and 8degreesC. We also determined resting metabolic rate (VO2) at -1degreesC, 2degreesC, and 4degreesC. U-crit of P. borchgrevinki was highest at -1degreesC (2.7+/-0.1 BL s(-1)) and rapidly decreased with temperature, representing a thermal performance breadth of only 5degreesC. This narrow thermal performance supports our prediction that specialisation to the subzero Antarctic marine environment is associated with a physiological trade-off in performance at high temperatures. Resting oxygen consumption and ventilation rate increased by more than 200% across the temperature range, which most likely contribute to the decrease in aerobic swimming capabilities at higher temperatures. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The microwave and thermal cure processes for the epoxy-amine systems (epoxy resin diglycidyl ether of bisphenol A, DGEBA) with 4,4'-diaminodiphenyl sulphone (DDS) and 4,4'-diaminodiphenyl methane (DDM) have been investigated for 1:1 stoichiometries by using fiber-optic FT-NIR spectroscopy. The DGEBA used was in the form of Ciba-Geigy GY260 resin. The DDM system was studied at a single cure temperature of 373 K and a single stoichiometry of 20.94 wt% and the DDS system was studied at a stoichiometry of 24.9 wt% and a range of temperatures between 393 and 443 K. The best values of the kinetic rate parameters for the consumption of amines have been determined by a least squares curve fit to a model for epoxy/amine cure. The activation energies for the polymerization of the DGEBA/DDS system were determined for both cure processes and found to be 66 and 69 kJ mol(-1) for the microwave and thermal cure processes, respectively. No evidence was found for any specific effect of the microwave radiation on the rate parameters, and the systems were both found to be characterized by a negative substitution effect. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Predicting plant leaf area production is required for modelling carbon balance and tiller dynamics in plant canopies. Plant leaf area production can be studied using a framework based on radiation intercepted, radiation use efficiency (RUE) and leaf area ratio (LAR) (ratio of leaf area to net above-ground biomass). The objective of this study was to test this framework for predicting leaf area production of sorghum during vegetative development by examining the stability of the contributing components over a large range of plant density. Four densities, varying from 2 to 16 plants m(-2), were implemented in a field experiment. Plants were either allowed to tiller or were maintained as uniculm by systematic tiller removal. In all cases, intercepted radiation was recorded daily and leaf area and shoot dry matter partitioning were quantified weekly at individual culm level. Up to anthesis, a unique relationship applied between fraction of intercepted radiation and leaf area index, and between shoot dry weight accumulation and amount of intercepted radiation, regardless of plant density. Partitioning of shoot assimilate between leaf, stem and head was also common across treatments up to anthesis, at both plant and culm levels. The relationship with thermal time (TT) from emergence of specific leaf area (SLA) and LAR of tillering plants did not change with plant density. In contrast, SLA of uniculm plants was appreciably lower under low-density conditions at any given TT from emergence. This was interpreted as a consequence of assimilate surplus arising from the inability of the plant to compensate by increasing the leaf area a culm could produce. It is argued that the stability of the extinction coefficient, RUE and plant LAR of tillering plants observed in these conditions provides a reliable way to predict leaf area production regardless of plant density. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A bituminous coal was pyrolyzed in a nitrogen stream in an entrained flow reactor at various temperatures from 700 to 1475 degreesC. Char samples were collected at different positions along the reactor. Each collected sample was oxidized nonisothermally in a TGA for reactivity determination. The reactivity of the coal char was found to decrease rapidly with residence time until 0.5 s, after which it decreased only slightly. On the bases of the reactivity data at various temperatures, a new approach was utilized to obtaining the true activation energy distribution function for thermal annealing without the assumption of any distribution function form or a constant preexponential factor. It appears that the true activation energy distribution function consists of two separate parts corresponding to different temperature ranges, suggesting different mechanisms in different temperature ranges. Partially burnt coal chars were also collected along the reactor when the coal was oxidized in air at various temperatures from 700 to 1475 degreesC. The collected samples were analyzed for the residual carbon content and the specific reaction rate was estimated. The characteristic time of thermal deactivation was compared with that of oxidation under realistic conditions. The characteristic times were found to be close to each other, indicating the importance of thermal deactivation during combustion of the coal studied.
Resumo:
Purpose: To study the relationship among the variables intensity ofthe end-of-day (EOD) dryness, corneal sensitivity and blink rate in soft contact lens (CL) wearers. Methods: Thirty-eight soft CL wearers (25 women and 13 men; mean age 27.1 ± 7.2 years) were enrolled. EOD dryness was assessed using a scale of 0–5 (0, none to 5, very intense). Mechanical and thermal (heat and cold) sensitivity were measured using a Belmonte’s gas esthesiometer. The blink rate was recorded using a video camera while subjects were wearing a hydrogel CL and watching a film for 90 min in a controlled environmental chamber. Results: A significant inverse correlation was found between EOD dryness and mechanical sensitivity (r: −0.39; p = 0.02); however, there were no significant correlations between EOD dryness and thermal sensitivity. A significant (r: 0.56; p < 0.001) correlation also was observed between EOD dryness and blink rate, but no correlations were found between blink rate and mechanical or thermal sensitivity. Conclusions: CL wearers with higher corneal sensitivity to mechanical stimulation reported more EOD dryness with habitual CL wear. Moreover, subjects reporting more EOD dryness had an increased blink rates during wear of a standard CL type. The increased blink rate could act to improve the ocular surface environment and relieve symptoms
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
A composting Heat Extraction Unit (HEU) was designed to utilise waste heat from decaying organic matter for a variety of heating application The aim was to construct an insulated small scale, sealed, organic matter filled container. In this vessel a process fluid within embedded pipes would absorb thermal energy from the hot compost and transport it to an external heat exchanger. Experiments were conducted on the constituent parts and the final design comprised of a 2046 litre container insulated with polyurethane foam and kingspan with two arrays of qualpex piping embedded in the compost to extract heat. The thermal energy was used in horticultural trials by heating polytunnels using a radiator system during a winter/spring period. The compost derived energy was compared with conventional and renewable energy in the form of an electric fan heater and solar panel. The compost derived energy was able to raise polytunnel temperatures to 2-3°C above the control, with the solar panel contributing no thermal energy during the winter trial and the electric heater the most efficient maintaining temperature at its preset temperature of 10°C. Plants that were cultivated as performance indicators showed no significant difference in growth rates between the heat sources. A follow on experiment conducted using special growing mats for distributing compost thermal energy directly under the plants (Radish, Cabbage, Spinach and Lettuce) displayed more successful growth patterns than those in the control. The compost HEU was also used for more traditional space heating and hot water heating applications. A test space was successfully heated over two trials with varying insulation levels. Maximum internal temperature increases of 7°C and 13°C were recorded for building U-values of 1.6 and 0.53 W/m2K respectively using the HEU. The HEU successfully heated a 60 litre hot water cylinder for 32 days with maximum water temperature increases of 36.5°C recorded. Total energy recovered from the 435 Kg of compost within the HEU during the polytunnel growth trial was 76 kWh which is 3 kWh/day for the 25 days when the HEU was activated. With a mean coefficient of performance level of 6.8 calculated for the HEU the technology is energy efficient. Therefore the compost HEU developed here could be a useful renewable energy technology particularly for small scale rural dwellers and growers with access to significant quantities of organic matter
Resumo:
We investigated the following aspects of the biology of a population of Cnemidophorus vacariensis Feltrim & Lema, 2000 during the four seasons: thermal biology, relationship with the thermal environment, daily and seasonal activity, population structure and growth rate. Cnemidophorus vacariensis is restricted to rocky outcrops of the "campos de cima da serra" grasslands on the Araucaria Plateau, southern Brazil, and is currently listed as regionally and nationally threatened with extinction. Data were collected from October 2004 through September 2007 in the state of Rio Grande do Sul. Sampling was conducted randomly from 08:00 a.m. to 6:00 p.m. The capture-mark-recapture method was employed. The lizards were captured by hand, and their cloacal temperature, sex, snout-ventral length (SVL), mass, and the temperature of their microhabitat (substrate temperature and air temperature) were recorded. Individuals were then marked by toe-clipping and released at the site of capture. Body temperatures were obtained for 175 individuals, activity data for 96 individuals, and data on population structure and growth for 59 individuals. All data were obtained monthly, at different times of the day. Cnemidophorus vacariensis average body temperature was 23.84ºC, ranging between 9.6 and 38.2ºC. Temperatures ranged between 21 and 29ºC. The correlation between external heat sources, substrate and air were positive and significant and there was a greater correlation between lizard's temperature and the temperature of the substrate (tigmothermic species). The relatively low body temperatures of individuals are associated with the climate of their environment (altitude up to 1,400 m), with large variations in temperature throughout the day and the year, and low temperatures in winter. The average body temperature observed for C. vacariensis was low when compared with that of phylogenetically related species, suggesting that the thermal biology of this species reflects adaptations to the temperate region where it lives. The monthly rates of activity of lizards were related to monthly variations in the ambient temperatures. Our data suggest that the daily and seasonal activity of C. vacariensis result from the interaction between two factors: changes in the environment temperature and the relationship between individuals and their thermal environment. The population structure of C. vacariensis varied throughout the study period, with maximum biomass in January and maximum density in February (recruitment period). The sex ratio diverged from the expected 1:1. The growth analysis showed a negative relationship between the growth rate of individuals and the SVL, revealing that young individuals grow faster than adults, a typical pattern for short-lived species. The population studied showed a seasonal and cyclical variation associated with the reproductive cycle. The life strategy of C. vacariensis seems to include adaptations to the seasonal variations in temperature, typical of its environment.
Resumo:
The snails Lymnaea (Radix) luteola exhibited marked variations in growth, longevity, and attaining sexual maturity at different temperatures and diets. At 10°C, irrespective of foods, pH and salinity of water, the snails had minimum life span, maximum death rate and lowest growth rate. At 15°C, the growth rate was comparatively higher and the snails survived for a few more days. But at these temperatures they failed to attain sexual maturity. Snails exposed to pH 5 and 9 at 20°, 25°, 30°, 35°C and room temperatures (19.6°-29.6°C); to 0.5, 1.5 and 2.5 NaCl at 20° and 35ºC; to 2.5 NaCl at 25°C and room temperatures failed to attain sexual maturity. The snails exposed to pH 7 and different salinity grades at 20°, 25°, 30°, 35°C and room temperatures became sexually mature between 25-93 days depending upon the type of foods used in the culture.
Resumo:
Previous studies have demonstrated the difference between the basal metabolic rate (BMR) and the sleeping metabolic rate (SMR): however, the difference in the Japanese population has not yet been explored. This study examined the relationship between the BMR and SMR in ninety-four healthy Japanese subjects (37 males and 57 females, 39 +/- 12 y of age and 22.0 +/- 7.4% body fat) in a respiratory chamber. The SMR was significantly lower than the BMR (1416 +/- 245 vs. 1492 +/- 256 kcal/d): however, there was a highly significant correlation between the two (r = 0.867; p < 0.001). The ratio of SMR/BMR largely varied among individuals (0.95 +/-0.08, 8.4% of the coefficient of variation). The ratio was significantly lower in males than in females (0.93 +/- 0.10 vs. 0.97 +/- 0.06, p < 0.05). None of the anthropometric measures (age, weight, body mass index, body surface area or percent body fat) correlated with the ratio. These results showed that SMR was 95%, of BMR on average in a healthy Japanese group. However, when applied over a longer time period (24 h or more), the difference tends to become negligible for most analyses in a group. Although the difference between SMR and BMR will induce a 5% gap of physical activity level defined as the total energy expenditure divided by the BMR or SMR, this factor seems to have little practical importance in epidemiological research.
Resumo:
We tested the hypothesis that elevation in heart rate (HR) during submaximal exercise in the heat is related, in part, to increased percentage of maximal O(2) uptake (%Vo(2 max)) utilized due to reduced maximal O(2) uptake (Vo(2 max)) measured after exercise under the same thermal conditions. Peak O(2) uptake (Vo(2 peak)), O(2) uptake, and HR during submaximal exercise were measured in 22 male and female runners under four environmental conditions designed to manipulate HR during submaximal exercise and Vo(2 peak). The conditions involved walking for 20 min at approximately 33% of control Vo(2 max) in 25, 35, 40, and 45 degrees C followed immediately by measurement of Vo(2 peak) in the same thermal environment. Vo(2 peak) decreased progressively (3.77 +/- 0.19, 3.61 +/- 0.18, 3.44 +/- 0.17, and 3.13 +/- 0.16 l/min) and HR at the end of the submaximal exercise increased progressively (107 +/- 2, 112 +/- 2, 120 +/- 2, and 137 +/- 2 beats/min) with increasing ambient temperature (T(a)). HR and %Vo(2 peak) increased in an identical fashion with increasing T(a). We conclude that elevation in HR during submaximal exercise in the heat is related, in part, to the increase in %Vo(2 peak) utilized, which is caused by reduced Vo(2 peak) measured during exercise in the heat. At high T(a), the dissociation of HR from %Vo(2 peak) measured after sustained submaximal exercise is less than if Vo(2 max) is assumed to be unchanged during exercise in the heat.
Resumo:
The thermal energetics of rodents from cool, wet tropical highlands are poorly known. Metabolic rate, body temperature and thermal conductance were measured in the moss-forest rat, Rattus niobe (Rodentia), a small murid endemic to the highlands of New Guinea. These data were evaluated in the context of the variation observed in the genus Rattus and among tropical murids. In 7 adult R. niobe, basal metabolic rate (BMR) averaged 53.6±6.6mLO2h(-1), or 103% of the value predicted for a body mass of 42.3±5.8g. Compared to other species of Rattus, R. niobe combines a low body temperature (35.5±0.6°C) and a moderately low minimal wet thermal conductance cmin (5.88±0.7mLO2h(-1)°C(-1), 95% of predicted) with a small size, all of which lead to reduced energy expenditure in a constantly cool environment. The correlations of mean annual rainfall and temperature, altitude and body mass with BMR, body temperature and cmin were analyzed comparatively among tropical Muridae. Neither BMR, nor cmin or body temperature correlated with ambient temperature or altitude. Some of the factors which promote high BMR in higher latitude habitats, such as seasonal exposure to very low temperature and short reproductive season, are lacking in wet montane tropical forests. BMR increased with rainfall, confirming a pattern observed among other assemblages of mammals. This correlation was due to the low BMR of several desert adapted murids, while R. niobe and other species from wet habitats had a moderate BMR.
Resumo:
Thermal hygrometric requirements for the rearing and release of Tamarixia radiata (Waterston) (Hymenoptera, Eulophidae). Tamarixia radiata is the main agent for the biological control of Diaphorina citri in Brazil with a parasitism rate ranging from 20 to 80%. This study investigated the influence of temperature on the development, fecundity and longevity of adults of T. radiata and the effect of relative humidity (RH) on their parasitism capacity and survival rate in the pre-imaginal period. The effect of temperature was assessed in the range between 15 and 35 ± 1ºC, 70 ± 10% RH, and a 14-h photophase. The RH effect was evaluated in the range from 30 to 90 ± 10%, temperature at 25 ± 1ºC, and photophase of 14-h. At 25ºC, circa 166.7 nymphs were parasitized, the highest parasitism capacity observed compared to other treatments. The longest longevity of females was observed at 25ºC, although the rate did not differ in the 20-30ºC temperature range. The threshold temperature (TT) was 7.2ºC, and 188.7 degrees-day were required for the development (egg-to-adult period). The parasitism rate and longevity were higher at 50 and 70% of RH. This shows that temperature and RH may affect the parasitism capacity of T. radiata on nymphs of D. citri, which can explain the great parasitism variation for D. citri observed in citrus groves in São Paulo State, Brazil.