994 resultados para T-DNA insertion mutant
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A hiper-homocisteinemia, resultante da deficiência na conversão da homocisteína em cistationina, constitui em fator de risco isolado para doenças vasculares. A mutação 844ins68 do gene da cistationina beta-sintetase é um fator adicional de risco para a trombose venosa profunda. O objetivo deste estudo foi avaliar a freqüência da mutação 844ins68 do gene da cistationina beta-sintetase em pacientes com trombose venosa profunda. Foram avaliados em estudo caso-controle 95 pacientes com trombose venosa profunda, a presença da mutação 844ins68 no éxon 8 do gene da cistationina beta-sintetase. Como critério de inclusão foi adotada a presença de trombose venosa profunda confirmada pelo dúplex ou flebografia. O grupo controle constituiu-se de 95 doadores de sangue, sem história familiar prévia de trombose venosa, com sexo, grupo étnico e idades pareados aos do grupo de estudo. Foram coletados 5 mL de sangue venoso com o uso de anticoagulante EDTA de cada participante. O DNA foi extraído dos leucócitos pelo método DTAB e CTAB. A detecção da mutação do gene foi realizada por amplificação de um segmento gênico por PCR, com iniciadores que flanqueiam a região de inserção e com revelação em gel de agarose a 2%, corado com brometo de etídio, sob luz UV. O fragmento correspondente ao alelo normal contém 184 pares de base e o correspondente ao alelo mutante, 252 pares de base. O teste exato de Fisher foi utilizado na análise dos resultados. A condição heterozigota para a mutação foi encontrada em 14,73% dos pacientes e em 3,1% dos indivíduos do grupo controle (p = 0,009). A freqüência do alelo mutante mostrou diferença significativa (p = 0,01), sendo 0,074 para os pacientes versus 0,016 para o grupo controle. Não foram encontrados casos de homozigose.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
5-azacytidine (5-azaC) treatment combined with cytosine arabinoside (ara-C) or caffeine were performed in vitro in Chinese hamster cells, CHO-K1 (wild-type) and xrs-5 (mutant) cell lines, in order to compare the cell response to the induction of chromosomal aberrations. Exponentially growing cells were treated with 5-azaC (4-16 uM) for 1 h, the cells were washed and incubated for 7 h, and 500 uM caffeine or 5 uM ara-C were added to the cultures for the last 2 h. In both cell lines, 5-azaC induced a significantly increase (P<0.01) in the frequencies of aberrations; in the combined treatments (5-azaC + Ara-C), a significant reduction (P<0.05) was observed for the aberrations which were randomly distributed. Caffeine had no influence at the same conditions. 5-azaC induced-DNA lesions were probably processed at S/G2 phase in a common pathway in both cell lines, but alternatively, 5-azaC may cause xrs-5 cells to revert to the wild-type.
Resumo:
Bacillus thuringiensis is a Gram-positive bacterium which main characteristic is the production of Cry proteins, that is toxic to some insects. These proteins, when ingested by susceptible insects, become active causing their death. In nature, it is possible to found B. thuringiensis strains which produce these proteins, but they differ in productivity (some of these isolates are more productive then others), and as to the toxicity levels of the produced proteins. Two B. thuringiensis strains that were highly effective against Spodoptera frugiperda larvae were chosen to verifying genetic mutation implication on Cry proteins productivity. One strain with a prolific spores production, while the other one only produced small amounts of spores. A genomic mutant library of these two isolates was, separately, constructed by genome Tn-5 transposon random insertion. Data analysis showed that mutation had a direct effect on the spores production, inducing an increase as well as a decrease in the production, according to the different strain observed. These results indicate, for the first time, that it is possible to use the described technique with B. thuringiensis, as well as the possibility to genetically breeding this bacteria. Another possibility introduced here is the possibility to do functional genetic studies mediated by mutagenesis in this bacterium.
Resumo:
Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools. © FUNPEC-RP.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O câncer do sistema nervoso central representa 2% de todas as neoplasias malignas na população mundial e 23% dos casos de câncer infantil. No Brasil, estimam-se 4.820 casos deste câncer em homens e 4.450 em mulheres para o ano de 2012. Os gliomas são tumores do sistema nervoso central formados a partir de células da glia e somam mais de 70% do tumores cerebrais. A propriedade mais importante dos gliomas é sua capacidade de evasão imunológica. Idade, etnia, gênero e ocupação podem ser considerados fatores de risco para o surgimento de gliomas, e são duas vezes mais frequentes em afro-americanos. O astrocitoma é o tumor glial mais frequente, constituindo cerca de 75% dos casos de gliomas. Estes tumores são classificados em quatro graus, de acordo com a Organização Mundial de Saúde. O DNA mitocondrial está relacionado com o desenvolvimento e a progressão de vários tipos de tumores. A mitocôndria é responsável pelo balanço energético celular e está envolvida no disparo da apoptose em resposta ao estresse oxidativo. Mutações na D-LOOP podem alterar a taxa de replicação do DNA e aumentar o risco do desenvolvimento do câncer. Neste estudo foram analisadas 29 amostras de astrocitoma classificados de acordo com a OMS. Nossos dados sugerem que os astrocitomas de baixo grau podem estar relacionados à herança genética, tornando portadores de alguns polimorfismos ou mutações específicas, mais suscetíveis ao risco de desenvolver a doença, e os de alto grau podem estar relacionados à exposição prolongada aos agentes carginógenos. Foram identificados polimorfismos e mutações onde alguns apresentaram relação com o risco do desenvolvimento de astrocitomas e com a progressão da doença. A inserção de dois ou mais nucleotídeos nas regiões de microssatélites pode causar sua instabilidade e contribuir com o surgimento do câncer. A deleção no sítio 16132 pode ser um marcador para astrocitoma de alto grau, assim como a inserção de duas ou mais citosinas no sítio 16190 pode ser um marcador específico para astrocitomas. As mutações heteroplásmicas podem ser determinantes para o surgimento e/ou progressão de astrocitomas de alto grau.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: Tuberculosis (TB) is a granulomatous disease caused by Mycobacterium tuberculosis. The genus Mycobacteriumhas two different complexes: M. tuberculosis Complex and M. avium Complex. This is a global health epidemic and remains a major global health problem, besides, the clinical severity of TB is significantly higher in transplanted patients. The detection of these mycobacteria complexes in transplanted patients, by molecular methods, is fundamental for quick treatment of patients and can contribute for rapid and accuracy of diagnosis. Objective: To detect mycobacteria DNA of M. tuberculosis and M. avium Complexes in formalin fixed paraffin-embedded samples (FFPE) of two patients groups: non transplanted and transplanted. Materials and Methods: The study includes 40 FFPE biopsies separated in four groups: NTP – presence of epithelioid granuloma and positive ZN, non-transplanted patients – 9 samples; NTN - presence of epithelioid granuloma and negative ZN, non-transplanted patients – 10 samples; TP – positive ZN, transplanted patients – 9 samples; TN – negative ZN, transplanted patients – 7 samples. Sections were cut for DNA extraction. Samples were submitted to PCR for amplification of: a) β-actin, b) IS6110 insertion and c) IS1245 insertion. DNA evaluation was made by spectrophotometry and efficiency and PCR analysis was made by agarose gels under UV light. Results: In all samples processed, 97.1% were positive for human β-actin gene. In22.2% of NTP group were found the IS6110 insertion sequencebut the IS1245 wasn´t. In the NTN group was not found any sequence. In theTP group, 11.1% of the samples were positive for IS6110 and also 11,1% werepositive for IS1245. In the TN group, 14.3% of the samples were positive forIS6110 and for IS1245, 14.3% was also positive. Conclusion: Although factors such as DNA degradation after formalin fixation and paraffin embedding, were possible to detect DNA from the human gene ...
Resumo:
The enzymatically catalyzed template-directed extension of ssDNA/primer complex is an impor-tant reaction of extraordinary complexity. The DNA polymerase does not merely facilitate the insertion of dNMP, but it also performs rapid screening of substrates to ensure a high degree of fidelity. Several kinetic studies have determined rate constants and equilibrium constants for the elementary steps that make up the overall pathway. The information is used to develop a macro-scopic kinetic model, using an approach described by Ninio [Ninio J., 1987. Alternative to the steady-state method: derivation of reaction rates from first-passage times and pathway probabili-ties. Proc. Natl. Acad. Sci. U.S.A. 84, 663–667]. The principle idea of the Ninio approach is to track a single template/primer complex over time and to identify the expected behavior. The average time to insert a single nucleotide is a weighted sum of several terms, in-cluding the actual time to insert a nucleotide plus delays due to polymerase detachment from ei-ther the ternary (template-primer-polymerase) or quaternary (+nucleotide) complexes and time delays associated with the identification and ultimate rejection of an incorrect nucleotide from the binding site. The passage times of all events and their probability of occurrence are ex-pressed in terms of the rate constants of the elementary steps of the reaction pathway. The model accounts for variations in the average insertion time with different nucleotides as well as the in-fluence of G+C content of the sequence in the vicinity of the insertion site. Furthermore the model provides estimates of error frequencies. If nucleotide extension is recognized as a compe-tition between successful insertions and time delaying events, it can be described as a binomial process with a probability distribution. The distribution gives the probability to extend a primer/template complex with a certain number of base pairs and in general it maps annealed complexes into extension products.
Resumo:
We report the effects of a synthetic peptide designed to act as a nuclear localization signal on the treatment of tuberculosis. The peptide contains 21 amino acid residues with the following specific domains: nuclear localization signal from SV 40T, cationic shuttle sequence, and cysteamide group at the C-terminus. The peptide was complexed with the plasmid DNAhsp65 and incorporated into cationic liposomes, forming a pseudo-ternary complex. The same cationic liposomes, composed of egg chicken L-alpha-phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium-propane, and 1,2-dioleoyl-3-trimethylammonium-propane (2:1:1 M), were previously evaluated as a gene carrier for tuberculosis immunization protocols with DNAhsp65. The pseudo-ternary complex presented a controlled size (250 nm), spherical-like shape, and various lamellae in liposomes as evaluated by transmission electron microscopy. An assay of fluorescence probe accessibility confirmed insertion of the peptide/DNA into the liposome structure. Peptide addition conferred no cytotoxicity in vitro, and similar therapeutic effects against tuberculosis were seen with four times less DNA compared with naked DNA treatment. Taken together, the results indicate that the pseudo-ternary complex is a promising gene vaccine for tuberculosis treatment. This work contributes to the development of multifunctional nanostructures in the search for strategies for in vivo DNA delivery. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylating downstream effectors. Although there has been a concerted effort to identify effectors of Chk1 activity, underlying mechanisms of effector action are still being identified. Metnase (also called SETMAR) is a SET and transposase domain protein that promotes both DNA double-strand break (DSB) repair and restart of stalled replication forks. In this study, we show that Metnase is phosphorylated only on Ser495 (S495) in vivo in response to DNA damage by ionizing radiation. Chk1 is the major mediator of this phosphorylation event. We had previously shown that wild-type (wt) Metnase associates with chromatin near DSBs and methylates histone H3 Lys36. Here we show that a Ser495Ala (S495A) Metnase mutant, which is not phosphorylated by Chk1, is defective in DSB-induced chromatin association. The S495A mutant also fails to enhance repair of an induced DSB when compared with wt Metnase. Interestingly, the S495A mutant demonstrated increased restart of stalled replication forks compared with wt Metnase. Thus, phosphorylation of Metnase S495 differentiates between these two functions, enhancing DSB repair and repressing replication fork restart. In summary, these data lend insight into the mechanism by which Chk1 enhances repair of DNA damage while at the same time repressing stalled replication fork restart. Oncogene (2012) 31, 4245-4254; doi:10.1038/onc.2011.586; published online 9 January 2012
Resumo:
Die Rolle der DNA-Bindungsdomäne der Kapsidproteine L1 und L2 humaner Papillomviren (HPV) wird bezüglich der in vitro DNA-Verpackung kontrovers diskutiert und ist für die in vivo DNA-Verpackung noch ungeklärt. Ich konnte zeigen, dass die L1 Proteine der HPV Typen 16, 18 und 33 DNA binden, nicht aber das HPV33 L2 Protein. Die DNA-Bindungsdomäne habe ich auf die letzten sieben Aminosäuren des Carboxyterminus eingegrenzt. In Funktionsanalysen zeigte ich, dass die DNA-Bindungsdomäne des L1 Proteins für den Einschluss von Markerplasmid DNA in Kapside in einem in vivo Ansatz essentiell ist, nicht aber für eine in vitro DNA-Verpackung. Das L2 Protein, das in Kapside eingebaut wurde, denen die L1 DNA-Bindungsdomäne fehlte, konnte die DNA-Verpackung nicht aufrechterhalten.Zusätzlich habe ich die Infektiösität in vitro und in vivo hergestellter DNA-haltiger Kapside (Pseudovirionen) verglichen. Dabei konnte ich zeigen, dass in vivo gewonnene Pseudovirionen, die DNA in Form von Chromatin enthalten, bis zu fünffach infektiöser sind als Pseudovirionen, die in vitro hergestellt wurden und histonfreie DNA enthalten. Biochemische und strukturelle Unterschiede konnten zwischen den zwei Arten von Pseudovirionen nicht festgestellt werden. Chromatin scheint demzufolge die Infektiösität der Pseudovirionen zu verstärken.