853 resultados para System-analysis
Resumo:
"...shortened version of lectures given....in August 1967..."
Resumo:
Most of the pages of the photocopy, which are in double columns, represent two pages of the original.
Resumo:
This study investigates the use of Pyroformer intermediate pyrolysis system to produce alternative diesel engines fuels (pyrolysis oil) from various biomass and waste feedstocks and the application of these pyrolysis oils in a diesel engine generating system for Combined Heat and Power (CHP) production. The pyrolysis oils were produced in a pilot-scale (20 kg/h) intermediate pyrolysis system. Comprehensive characterisations, with a view to use as engine fuels, were carried out on the sewage sludge and de-inking sludge derived pyrolysis oils. They were both found to be able to provide sufficient heat for fuelling a diesel engine. The pyrolysis oils also presented poor combustibility and high carbon deposition, but these problems could be mitigated by means of blending the pyrolysis oils with biodiesel (derived from waste cooking oil). The blends of SSPO (sewage sludge pyrolysis oil) and biodiesel (30/70 and 50/50 in volumetric ratios) were tested in a 15 kWe Lister type stationary generating system for up to 10 hours. There was no apparent deterioration observed in engine operation. With 30% SSPO blended into biodiesel, the engine presents better overall performance (electric efficiency), fuel consumption, and overall exhaust emissions than with 50% SSPO blend. An overall system analysis was carried out on a proposed integrated Pyroformer-CHP system. Combined with real experimental results, this was used for evaluating the costs for producing heat and power and char from wood pellets and sewage sludge. It is concluded that the overall system efficiencies for both types of plant can be over 40%; however the integrated CHP system is not economically viable. This is due to extraordinary project capital investment required.
Resumo:
Aim: Identify the incidence of vitreomacular traction (VMT) and frequency of reduced vision in the absence of other coexisting macular pathology using a pragmatic classification system for VMT in a population of patients referred to the hospital eye service. Methods: A detailed survey of consecutive optical coherence tomography (OCT) scans was done in a high-throughput ocular imaging service to ascertain cases of vitreomacular adhesion (VMA) and VMT using a departmental classification system. Analysis was done on the stages of traction, visual acuity, and association with other macular conditions. Results: In total, 4384 OCT scan episodes of 2223 patients were performed. Two hundred and fourteen eyes had VMA/VMT, with 112 eyes having coexisting macular pathology. Of 102 patients without coexisting pathology, 57 patients had VMT grade between 2 and 8, with a negative correlation between VMT grade and number of Snellen lines (r= -0.61717). There was a distinct cutoff in visual function when VMT grade was higher than 4 with the presence of cysts and sub retinal separation and breaks in the retinal layers. Conclusions: VMT is a common encounter often associated with other coexisting macular pathology. We estimated an incidence rate of 0.01% of VMT cases with reduced vision and without coexisting macular pathology that may potentially benefit from intervention. Grading of VMT to select eyes with cyst formation as well as hole formation may be useful for targeting patients who are at higher risk of visual loss from VMT.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
Oil palm has increasingly been established on peatlands throughout Indonesia. One of the concerns is that the drainage required for cultivating oil palm in peatlands leads to soil subsidence, potentially increasing future flood risks. This study analyzes the hydrological and economic effects of oil palm production in a peat landscape in Central Kalimantan. We examine two land use scenarios, one involving conversion of the complete landscape including a large peat area to oil palm plantations, and another involving mixed land use including oil palm plantations, jelutung (jungle rubber; (Dyera spp.) plantations, and natural forest. The hydrological effect was analyzed through flood risk modeling using a high-resolution digital elevation model. For the economic analysis, we analyzed four ecosystem services: oil palm production, jelutung production, carbon sequestration, and orangutan habitat. This study shows that after 100 years, in the oil palm scenario, about 67% of peat in the study area will be subject to regular flooding. The flood-prone area will be unsuitable for oil palm and other crops requiring drained soils. The oil palm scenario is the most profitable only in the short term and when the externalities of oil palm production, i.e., the costs of CO2 emissions, are not considered. In the examined scenarios, the social costs of carbon emissions exceed the private benefits from oil palm plantations in peat. Depending upon the local hydrology, income from jelutung, which can sustainably be grown in undrained conditions and does not lead to soil subsidence, outweighs that from oil palm after several decades. These findings illustrate the trade-offs faced at present in Indonesian peatland management and point to economic advantages of an approach that involves expansion of oil palm on mineral lands while conserving natural peat forests and using degraded peat for crops that do not require drainage.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Wydział Nauk Politycznych i Dziennikarstwa
Resumo:
In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass). The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW) and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations.
Resumo:
Part 8: Business Strategies Alignment
Resumo:
As unmanned autonomous vehicles (UAVs) are being widely utilized in military and civil applications, concerns are growing about mission safety and how to integrate dierent phases of mission design. One important barrier to a coste ective and timely safety certication process for UAVs is the lack of a systematic approach for bridging the gap between understanding high-level commander/pilot intent and implementation of intent through low-level UAV behaviors. In this thesis we demonstrate an entire systems design process for a representative UAV mission, beginning from an operational concept and requirements and ending with a simulation framework for segments of the mission design, such as path planning and decision making in collision avoidance. In this thesis, we divided this complex system into sub-systems; path planning, collision detection and collision avoidance. We then developed software modules for each sub-system
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
Esta tesis pretende demostrar y describir las diferentes características de los montacargas que existen en el mercado, teniendo en cuenta sus ventajas y desventajas, logrando como objetivo analizar la viabilidad de la implementación de los montacargas eléctricos en la industria colombiana a partir de la información brindada sobre las características esenciales de los montacargas eléctricos que hay en el mercado. Así mismo, se quiere mostrar que los montacargas eléctricos generan un ahorro sustancial en comparación con los montacargas convencionales que hay hoy en día en el mercado, logrando así que la industria colombiana reduzca sus gastos en un porcentaje mediante la implementación de las nuevas referencias de montacargas eléctricos los cuales serian una alternativa para las compañías colombianas. Mediante una detallada revisión conceptual, se mostrara la viabilidad de los montacargas eléctricos frente a los otros tipos de montacargas, teniendo como premisa el conocimiento de lo que hoy en día requieren las industrias colombianas, y cumpliendo así con una detallada comparación en donde se enfatice la diferenciación de los montacargas eléctricos con otros tipos que existen y se logre brindar una clara percepción de estos junto con las ventajas de estos vehículos para lograr así brindar mayor información a la industria colombiana sobre las ventajas de la implementación de los montacargas eléctricos en la industria colombiana.