927 resultados para Synthetic Image Analysis
Resumo:
The importance of non-destructive techniques (NDT) in structural health monitoring programmes is being critically felt in the recent times. The quality of the measured data, often affected by various environmental conditions can be a guiding factor in terms usefulness and prediction efficiencies of the various detection and monitoring methods used in this regard. Often, a preprocessing of the acquired data in relation to the affecting environmental parameters can improve the information quality and lead towards a significantly more efficient and correct prediction process. The improvement can be directly related to the final decision making policy about a structure or a network of structures and is compatible with general probabilistic frameworks of such assessment and decision making programmes. This paper considers a preprocessing technique employed for an image analysis based structural health monitoring methodology to identify sub-marine pitting corrosion in the presence of variable luminosity, contrast and noise affecting the quality of images. A preprocessing of the gray-level threshold of the various images is observed to bring about a significant improvement in terms of damage detection as compared to an automatically computed gray-level threshold. The case dependent adjustments of the threshold enable to obtain the best possible information from an existing image. The corresponding improvements are observed in a qualitative manner in the present study.
Resumo:
Scientists planning to use underwater stereoscopic image technologies are often faced with numerous problems during the methodological implementations: commercial equipment is too expensive; the setup or calibration is too complex; or the imaging processing (i.e. measuring objects in the stereo-images) is too complicated to be performed without a time-consuming phase of training and evaluation. The present paper addresses some of these problems and describes a workflow for stereoscopic measurements for marine biologists. It also provides instructions on how to assemble an underwater stereo-photographic system with two digital consumer cameras and gives step-by-step guidelines for setting up the hardware. The second part details a software procedure to correct stereo-image pairs for lens distortions, which is especially important when using cameras with non-calibrated optical units. The final part presents a guide to the process of measuring the lengths (or distances) of objects in stereoscopic image pairs. To reveal the applicability and the restrictions of the described systems and to test the effects of different types of camera (a compact camera and an SLR type), experiments were performed to determine the precision and accuracy of two generic stereo-imaging units: a diver-operated system based on two Olympus Mju 1030SW compact cameras and a cable-connected observatory system based on two Canon 1100D SLR cameras. In the simplest setup without any correction for lens distortion, the low-budget Olympus Mju 1030SW system achieved mean accuracy errors (percentage deviation of a measurement from the object's real size) between 10.2 and -7.6% (overall mean value: -0.6%), depending on the size, orientation and distance of the measured object from the camera. With the single lens reflex (SLR) system, very similar values between 10.1% and -3.4% (overall mean value: -1.2%) were observed. Correction of the lens distortion significantly improved the mean accuracy errors of either system. Even more, system precision (spread of the accuracy) improved significantly in both systems. Neither the use of a wide-angle converter nor multiple reassembly of the system had a significant negative effect on the results. The study shows that underwater stereophotography, independent of the system, has a high potential for robust and non-destructive in situ sampling and can be used without prior specialist training.
Resumo:
The use of remote sensing for monitoring of submerged aquatic vegetation (SAV) in fluvial environments has been limited by the spatial and spectral resolution of available image data. The absorption of light in water also complicates the use of common image analysis methods. This paper presents the results of a study that uses very high resolution (VHR) image data, collected with a Near Infrared sensitive DSLR camera, to map the distribution of SAV species for three sites along the Desselse Nete, a lowland river in Flanders, Belgium. Plant species, including Ranunculus aquatilis L., Callitriche obtusangula Le Gall, Potamogeton natans L., Sparganium emersum L. and Potamogeton crispus L., were classified from the data using Object-Based Image Analysis (OBIA) and expert knowledge. A classification rule set based on a combination of both spectral and structural image variation (e.g. texture and shape) was developed for images from two sites. A comparison of the classifications with manually delineated ground truth maps resulted for both sites in 61% overall accuracy. Application of the rule set to a third validation image, resulted in 53% overall accuracy. These consistent results show promise for species level mapping in such biodiverse environments, but also prompt a discussion on assessment of classification accuracy.
Resumo:
Image processing offers unparalleled potential for traffic monitoring and control. For many years engineers have attempted to perfect the art of automatic data abstraction from sequences of video images. This paper outlines a research project undertaken at Napier University by the authors in the field of image processing for automatic traffic analysis. A software based system implementing TRIP algorithms to count cars and measure vehicle speed has been developed by members of the Transport Engineering Research Unit (TERU) at the University. The TRIP algorithm has been ported and evaluated on an IBM PC platform with a view to hardware implementation of the pre-processing routines required for vehicle detection. Results show that a software based traffic counting system is realisable for single window processing. Due to the high volume of data required to be processed for full frames or multiple lanes, system operations in real time are limited. Therefore specific hardware is required to be designed. The paper outlines a hardware design for implementation of inter-frame and background differencing, background updating and shadow removal techniques. Preliminary results showing the processing time and counting accuracy for the routines implemented in software are presented and a real time hardware pre-processing architecture is described.
Resumo:
A two-step etching technique for fine-grained calcite mylonites using 0.37% hydrochloric and 0.1% acetic acid produces a topographic relief which reflects the grain boundary geometry. With this technique, calcite grain boundaries become more intensely dissolved than their grain interiors but second phase minerals like dolomite, quartz, feldspars, apatite, hematite and pyrite are not affected by the acid and therefore form topographic peaks. Based on digital backscatter electron images and element distribution maps acquired on a scanning electron microscope, the geometry of calcite and the second phase minerals can be automatically quantified using image analysis software. For research on fine-grained carbonate rocks (e.g. dolomite calcite mixtures), this low-cost approach is an attractive alternative to the generation of manual grain boundary maps based on photographs from ultra-thin sections or orientation contrast images.
Resumo:
One of the major challenges facing a present day game development company is the removal of bugs from such complex virtual environments. This work presents an approach for measuring the correctness of synthetic scenes generated by a rendering system of a 3D application, such as a computer game. Our approach builds a database of labelled point clouds representing the spatiotemporal colour distribution for the objects present in a sequence of bug-free frames. This is done by converting the position that the pixels take over time into the 3D equivalent points with associated colours. Once the space of labelled points is built, each new image produced from the same game by any rendering system can be analysed by measuring its visual inconsistency in terms of distance from the database. Objects within the scene can be relocated (manually or by the application engine); yet the algorithm is able to perform the image analysis in terms of the 3D structure and colour distribution of samples on the surface of the object. We applied our framework to the publicly available game RacingGame developed for Microsoft(R) Xna(R). Preliminary results show how this approach can be used to detect a variety of visual artifacts generated by the rendering system in a professional quality game engine.
Resumo:
Road surface macro-texture is an indicator used to determine the skid resistance levels in pavements. Existing methods of quantifying macro-texture include the sand patch test and the laser profilometer. These methods utilise the 3D information of the pavement surface to extract the average texture depth. Recently, interest in image processing techniques as a quantifier of macro-texture has arisen, mainly using the Fast Fourier Transform (FFT). This paper reviews the FFT method, and then proposes two new methods, one using the autocorrelation function and the other using wavelets. The methods are tested on pictures obtained from a pavement surface extending more than 2km's. About 200 images were acquired from the surface at approx. 10m intervals from a height 80cm above ground. The results obtained from image analysis methods using the FFT, the autocorrelation function and wavelets are compared with sensor measured texture depth (SMTD) data obtained from the same paved surface. The results indicate that coefficients of determination (R2) exceeding 0.8 are obtained when up to 10% of outliers are removed.
Resumo:
Liu, Yonghuai, Liu, Honghai, Li, Longzhuang, Wei, Baogang. Accurate Range Image Registration: Eliminating or Modelling Outliers. Proceedings of 12th IEEE Conference on Emerging Technologies and Factory Automation, 2007, pp. 1316-1323. Sponsorship: IEEE
Resumo:
This paper reports image analysis methods that have been developed to study the microstructural changes of non-wovens made by the hydroentanglement process. The validity of the image processing techniques has been ascertained by applying them to test images with known properties. The parameters in preprocessing of the scanning electron microscope (SEM) images used in image processing have been tested and optimized. The fibre orientation distribution is estimated using fast Fourier transform (FFT) and Hough transform (HT) methods. The results obtained using these two methods are in good agreement. The HT method is more demanding in computational time compared with the Fourier transform (FT) method. However, the advantage of the HT method is that the actual orientation of the lines can be concluded directly from the result of the transform without the need for any further computation. The distribution of the length of the straight fibre segments of the fabrics is evaluated by the HT method. The effect of curl of the fibres on the result of this evaluation is shown.
Resumo:
The image analysis techniques developed in Part 1 to study microstructural changes in non-woven fabrics are applied to measure the fibre orientation distribution and fibre length distribution of hydroentangled fabrics. The results are supported by strength and modulus measurements using samples from the same fabrics. It is shown that the techniques developed can successfully be used to assess the degree of entanglement of hydroentangled fabrics regardless of their thickness.
Dynamic single cell measurements of kinase activity by synthetic kinase activity relocation sensors.
Resumo:
BACKGROUND: Mitogen activated protein kinases (MAPK) play an essential role in integrating extra-cellular signals and intra-cellular cues to allow cells to grow, adapt to stresses, or undergo apoptosis. Budding yeast serves as a powerful system to understand the fundamental regulatory mechanisms that allow these pathways to combine multiple signals and deliver an appropriate response. To fully comprehend the variability and dynamics of these signaling cascades, dynamic and quantitative single cell measurements are required. Microscopy is an ideal technique to obtain these data; however, novel assays have to be developed to measure the activity of these cascades. RESULTS: We have generated fluorescent biosensors that allow the real-time measurement of kinase activity at the single cell level. Here, synthetic MAPK substrates were engineered to undergo nuclear-to-cytoplasmic relocation upon phosphorylation of a nuclear localization sequence. Combination of fluorescence microscopy and automated image analysis allows the quantification of the dynamics of kinase activity in hundreds of single cells. A large heterogeneity in the dynamics of MAPK activity between individual cells was measured. The variability in the mating pathway can be accounted for by differences in cell cycle stage, while, in the cell wall integrity pathway, the response to cell wall stress is independent of cell cycle stage. CONCLUSIONS: These synthetic kinase activity relocation sensors allow the quantification of kinase activity in live single cells. The modularity of the architecture of these reporters will allow their application in many other signaling cascades. These measurements will allow to uncover new dynamic behaviour that previously could not be observed in population level measurements.
Resumo:
Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image-Projection Explorer for Images-a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.
Resumo:
Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.