918 resultados para Supervised classifiers
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
L’annotation en rôles sémantiques est une tâche qui permet d’attribuer des étiquettes de rôles telles que Agent, Patient, Instrument, Lieu, Destination etc. aux différents participants actants ou circonstants (arguments ou adjoints) d’une lexie prédicative. Cette tâche nécessite des ressources lexicales riches ou des corpus importants contenant des phrases annotées manuellement par des linguistes sur lesquels peuvent s’appuyer certaines approches d’automatisation (statistiques ou apprentissage machine). Les travaux antérieurs dans ce domaine ont porté essentiellement sur la langue anglaise qui dispose de ressources riches, telles que PropBank, VerbNet et FrameNet, qui ont servi à alimenter les systèmes d’annotation automatisés. L’annotation dans d’autres langues, pour lesquelles on ne dispose pas d’un corpus annoté manuellement, repose souvent sur le FrameNet anglais. Une ressource telle que FrameNet de l’anglais est plus que nécessaire pour les systèmes d’annotation automatisé et l’annotation manuelle de milliers de phrases par des linguistes est une tâche fastidieuse et exigeante en temps. Nous avons proposé dans cette thèse un système automatique pour aider les linguistes dans cette tâche qui pourraient alors se limiter à la validation des annotations proposées par le système. Dans notre travail, nous ne considérons que les verbes qui sont plus susceptibles que les noms d’être accompagnés par des actants réalisés dans les phrases. Ces verbes concernent les termes de spécialité d’informatique et d’Internet (ex. accéder, configurer, naviguer, télécharger) dont la structure actancielle est enrichie manuellement par des rôles sémantiques. La structure actancielle des lexies verbales est décrite selon les principes de la Lexicologie Explicative et Combinatoire, LEC de Mel’čuk et fait appel partiellement (en ce qui concerne les rôles sémantiques) à la notion de Frame Element tel que décrit dans la théorie Frame Semantics (FS) de Fillmore. Ces deux théories ont ceci de commun qu’elles mènent toutes les deux à la construction de dictionnaires différents de ceux issus des approches traditionnelles. Les lexies verbales d’informatique et d’Internet qui ont été annotées manuellement dans plusieurs contextes constituent notre corpus spécialisé. Notre système qui attribue automatiquement des rôles sémantiques aux actants est basé sur des règles ou classificateurs entraînés sur plus de 2300 contextes. Nous sommes limités à une liste de rôles restreinte car certains rôles dans notre corpus n’ont pas assez d’exemples annotés manuellement. Dans notre système, nous n’avons traité que les rôles Patient, Agent et Destination dont le nombre d’exemple est supérieur à 300. Nous avons crée une classe que nous avons nommé Autre où nous avons rassemblé les autres rôles dont le nombre d’exemples annotés est inférieur à 100. Nous avons subdivisé la tâche d’annotation en sous-tâches : identifier les participants actants et circonstants et attribuer des rôles sémantiques uniquement aux actants qui contribuent au sens de la lexie verbale. Nous avons soumis les phrases de notre corpus à l’analyseur syntaxique Syntex afin d’extraire les informations syntaxiques qui décrivent les différents participants d’une lexie verbale dans une phrase. Ces informations ont servi de traits (features) dans notre modèle d’apprentissage. Nous avons proposé deux techniques pour l’identification des participants : une technique à base de règles où nous avons extrait une trentaine de règles et une autre technique basée sur l’apprentissage machine. Ces mêmes techniques ont été utilisées pour la tâche de distinguer les actants des circonstants. Nous avons proposé pour la tâche d’attribuer des rôles sémantiques aux actants, une méthode de partitionnement (clustering) semi supervisé des instances que nous avons comparée à la méthode de classification de rôles sémantiques. Nous avons utilisé CHAMÉLÉON, un algorithme hiérarchique ascendant.
Resumo:
Les logiciels de correction grammaticale commettent parfois des détections illégitimes (fausses alertes), que nous appelons ici surdétections. La présente étude décrit les expériences de mise au point d’un système créé pour identifier et mettre en sourdine les surdétections produites par le correcteur du français conçu par la société Druide informatique. Plusieurs classificateurs ont été entraînés de manière supervisée sur 14 types de détections faites par le correcteur, en employant des traits couvrant di-verses informations linguistiques (dépendances et catégories syntaxiques, exploration du contexte des mots, etc.) extraites de phrases avec et sans surdétections. Huit des 14 classificateurs développés sont maintenant intégrés à la nouvelle version d’un correcteur commercial très populaire. Nos expériences ont aussi montré que les modèles de langue probabilistes, les SVM et la désambiguïsation sémantique améliorent la qualité de ces classificateurs. Ce travail est un exemple réussi de déploiement d’une approche d’apprentissage machine au service d’une application langagière grand public robuste.
Resumo:
Ce mémoire est composé de trois articles et présente les résultats de travaux de recherche effectués dans le but d'améliorer les techniques actuelles permettant d'utiliser des données associées à certaines tâches dans le but d'aider à l'entraînement de réseaux de neurones sur une tâche différente. Les deux premiers articles présentent de nouveaux ensembles de données créés pour permettre une meilleure évaluation de ce type de techniques d'apprentissage machine. Le premier article introduit une suite d'ensembles de données pour la tâche de reconnaissance automatique de chiffres écrits à la main. Ces ensembles de données ont été générés à partir d'un ensemble de données déjà existant, MNIST, auquel des nouveaux facteurs de variation ont été ajoutés. Le deuxième article introduit un ensemble de données pour la tâche de reconnaissance automatique d'expressions faciales. Cet ensemble de données est composé d'images de visages qui ont été collectées automatiquement à partir du Web et ensuite étiquetées. Le troisième et dernier article présente deux nouvelles approches, dans le contexte de l'apprentissage multi-tâches, pour tirer avantage de données pour une tâche donnée afin d'améliorer les performances d'un modèle sur une tâche différente. La première approche est une généralisation des neurones Maxout récemment proposées alors que la deuxième consiste en l'application dans un contexte supervisé d'une technique permettant d'inciter des neurones à apprendre des fonctions orthogonales, à l'origine proposée pour utilisation dans un contexte semi-supervisé.
Resumo:
In this paper, a new methodology for the prediction of scoliosis curve types from non invasive acquisitions of the back surface of the trunk is proposed. One hundred and fifty-nine scoliosis patients had their back surface acquired in 3D using an optical digitizer. Each surface is then characterized by 45 local measurements of the back surface rotation. Using a semi-supervised algorithm, the classifier is trained with only 32 labeled and 58 unlabeled data. Tested on 69 new samples, the classifier succeeded in classifying correctly 87.0% of the data. After reducing the number of labeled training samples to 12, the behavior of the resulting classifier tends to be similar to the reference case where the classifier is trained only with the maximum number of available labeled data. Moreover, the addition of unlabeled data guided the classifier towards more generalizable boundaries between the classes. Those results provide a proof of feasibility for using a semi-supervised learning algorithm to train a classifier for the prediction of a scoliosis curve type, when only a few training data are labeled. This constitutes a promising clinical finding since it will allow the diagnosis and the follow-up of scoliotic deformities without exposing the patient to X-ray radiations.
Resumo:
Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.
Resumo:
Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.
Resumo:
We present distribution independent bounds on the generalization misclassification performance of a family of kernel classifiers with margin. Support Vector Machine classifiers (SVM) stem out of this class of machines. The bounds are derived through computations of the $V_gamma$ dimension of a family of loss functions where the SVM one belongs to. Bounds that use functions of margin distributions (i.e. functions of the slack variables of SVM) are derived.
Resumo:
The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
This paper discusses the effect of play on the personality of hearing impaired children.
Resumo:
This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.