L'atténuation statistique des surdétections d'un correcteur grammatical symbolique


Autoria(s): Gotti, Fabrizio
Contribuinte(s)

Langlais, Philippe

Data(s)

11/09/2013

31/12/1969

11/09/2013

02/11/2012

01/02/2012

Resumo

Les logiciels de correction grammaticale commettent parfois des détections illégitimes (fausses alertes), que nous appelons ici surdétections. La présente étude décrit les expériences de mise au point d’un système créé pour identifier et mettre en sourdine les surdétections produites par le correcteur du français conçu par la société Druide informatique. Plusieurs classificateurs ont été entraînés de manière supervisée sur 14 types de détections faites par le correcteur, en employant des traits couvrant di-verses informations linguistiques (dépendances et catégories syntaxiques, exploration du contexte des mots, etc.) extraites de phrases avec et sans surdétections. Huit des 14 classificateurs développés sont maintenant intégrés à la nouvelle version d’un correcteur commercial très populaire. Nos expériences ont aussi montré que les modèles de langue probabilistes, les SVM et la désambiguïsation sémantique améliorent la qualité de ces classificateurs. Ce travail est un exemple réussi de déploiement d’une approche d’apprentissage machine au service d’une application langagière grand public robuste.

Grammar checking software sometimes erroneously flags a correct word sequence as an error, a problem we call overdetection in the present study. We describe the devel-opment of a system for identifying and filtering out the overdetections produced by the French grammar checker designed by the firm Druide Informatique. Various fami-lies of classifiers have been trained in a supervised way for 14 types of detections flagged by the grammar checker, using features that capture diverse linguistic phe-nomena (syntactic dependency links, POS tags, word context exploration, etc.), extracted from sentences with and without overdetections. Eight of the 14 classifiers we trained are now part of the latest version of a very popular commercial grammar checker. Moreover, our experiments have shown that statistical language models, SVMs and word sense disambiguation can all contribute to the improvement of these classifiers. This project is a striking illustration of a machine learning component suc-cessfully integrated within a robust, commercial natural language processing application.

Identificador

http://hdl.handle.net/1866/9809

Idioma(s)

fr

Palavras-Chave #Correction grammaticale #Apprentissage machine supervisé #Modèles de langue probabilistes #Grammar checking #Supervised machine learning #Statistical language models #Applied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)
Tipo

Thèse ou Mémoire numérique / Electronic Thesis or Dissertation