941 resultados para Sunscreens degradation
Resumo:
The photocatalytic degradation of nitrobenzene and substituted nitrobenzenes under UV exposure was investigated with combustion synthesized nano-TiO2 and commercial TiO2 catalyst, Degussa P-25. The experimental data indicated that the photodegradation kinetics was first order. The photocatalytic degradation rates were considerably higher when catalyzed with combustion synthesized TiO2 compared to that of Degussa P-25. The degradation rate coefficients followed the order: 1-chloro,14-dinitrobenzene similar or equal to 4-nitrophenot > 2-nitrophenol > 1-chloro.4-nitrobenzene > 3-niti-ophenol > 2,4-dinitrophenol > 1-chloro,2-nitrobenzene > nitrobenzene > 1,3-dinitrobenzene. Plausible mechanisms and reasons for the observation of the above order are discussed.
Resumo:
The ultrasonic degradation of two dyes, Rhodamine B (C28H31ClN2O3) and Rhodamine Blue (C28H32N2O3), were studied in the absence of catalyst and in the presence of two catalysts (combustion-synthesized anatase TiO2 and commercial Degussa P-25 TiO2. The rate of degradation of catalyzed reaction was higher than that obtained with in the absence of the catalysts. Among the catalysts, combustion-synthesized anatase TiO2 degraded the dyes faster when compared to the degradation with commercial Degussa P-25 catalyst. A Langmuir-Hinshelwood kinetic model was developed and the kinetic rate parameters were determined. The effect of other operating parameters, such as initial concentration, pH, temperature, and power intensity, was also investigated. The degradation rate increased with decreasing pH, increasing temperature, and higher intensity.
Resumo:
The ultrasonic degradation of two dyes, Rhodamine B (C28H31ClN2O3) and Rhodamine Blue (C28H32N2O3), were studied in the absence of catalyst and in the presence of two catalysts (combustion-synthesized anatase TiO2 and commercial Degussa P-25 TiO2. The rate of degradation of catalyzed reaction was higher than that obtained with in the absence of the catalysts. Among the catalysts, combustion-synthesized anatase TiO2 degraded the dyes faster when compared to the degradation with commercial Degussa P-25 catalyst. A Langmuir-Hinshelwood kinetic model was developed and the kinetic rate parameters were determined. The effect of other operating parameters, such as initial concentration, pH, temperature, and power intensity, was also investigated. The degradation rate increased with decreasing pH, increasing temperature, and higher intensity.
Resumo:
Cereal water-soluble β-glucan [(1→3)(1→4)-β-D-glucan] has well-evidenced health benefits and it contributes to the texture properties of foods. These functions are characteristically dependent on the excellent viscosity forming ability of this cell wall polysaccharide. The viscosity is affected by the molar mass, solubility and conformation of β-glucan molecule, which are further known to be altered during food processing. This study focused on demonstrating the degradation of β-glucan in water solutions following the addition of ascorbic acid, during heat treatments or high pressure homogenisation. Furthermore, the motivation of this study was in the non-enzymatic degradation mechanisms, particularly in oxidative cleavage via hydroxyl radicals. The addition of ascorbic acid at food-related concentrations (2-50 mM), autoclaving (120°C) treatments, and high pressure homogenisation (300-1000 bar) considerably cleaved the β-glucan chains, determined as a steep decrease in the viscosity of β-glucan solutions and decrease in the molar mass of β-glucan. The cleavage was more intense in a solution of native β-glucan with co-extracted compounds than in a solution of highly purified β-glucan. Despite the clear and immediate process-related degradation, β-glucan was less sensitive to these treatments compared to other water-soluble polysaccharides previously reported in the literature. In particular, the highly purified β-glucan was relatively resistant to the autoclaving treatments without the addition of ferrous ions. The formation of highly oxidative free radicals was detected at the elevated temperatures, and the formation was considerably accelerated by added ferrous ions. Also ascorbic acid pronounced the formation of these oxidative radicals, and oxygen was simultaneously consumed by ascorbic acid addition and by heating the β-glucan solutions. These results demonstrated the occurrence of oxidative reactions, most likely the metal catalysed Fenton-like reactions, in the β-glucan solutions during these processes. Furthermore, oxidized functional groups (carbonyls) were formed along the β-glucan chain by the treatments, including high pressure homogenisation, evidencing the oxidation of β-glucan by these treatments. The degradative forces acting on the particles in the high pressure homogenisation are generally considered to be the mechanical shear, but as shown here, carbohydrates are also easily degraded during the process, and oxidation may have a role in the modification of polysaccharides by this technique. In the present study, oat β-glucan was demonstrated to be susceptible to degradation during aqueous processing by non-enzymatic degradation mechanisms. Oxidation was for the first time shown to be a highly relevant degradation mechanism of β-glucan in food processing.
Resumo:
Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.
Resumo:
Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.
Resumo:
The mechano-chemical degradation of poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA) and poly(n-butyl methacrylate) (PBMA) using ultrasound (US), ultraviolet (UV) radiation and a photoinitiator (benzoin) has been investigated. The degradation of the polymers was monitored using the reduction in number average molecular weight (M-n) and polydispersity (PDI). A degradation mechanism that included the decomposition of the initiator, generation of polymer radicals by the hydrogen abstraction of initiator radicals, reversible chain transfer between stable polymer and polymer radicals was proposed. The mechanism assumed mid-point chain scission due to US and random scission due to UV radiation. A series of experiments with different initial M-n of the polymers were performed and the results indicated that, irrespective of the initial PDI, the PDI during the sono-photooxidative degradation evolved to a steady state value of 1.6 +/- 0.05 for all the polymers. This steady state evolution of PDI was successfully predicted by the continuous distribution kinetics model. The rate coefficients of polymer scission due to US and UV exhibited a linear increase and decrease with the size of the alkyl group of the poly(alkyl methacrylate)s, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An oxidative pathway hitherto unknown for tile degradation of a sesquiterpene alcohol, nerolidol (I) by Alcaligenes eutrophus is presented. Fermentation of nerolidol (I) by this organism in a mineral salts medium resulted in the formation of geranylacetone (II) and an optically active alcohol (S)-(+)-geranylacetol (III), as major metabolites. Nerolidol (I) induced cells readily transformed 1,2-epoxynerolidol (IV) and 1,2-dihydroxynerolidol (V) into geranylacetone (II). These cells also exhibited their ability to carry out stereospecific reduction of II into (S)-(+)-geranylacetol (III). Oxygen uptake studies clearly indicated that nerolidol induced cells oxidized compounds II, III, IV, V and ethyleneglycol. Based on these observations a new oxidative pathway for the degradation of I is suggested which envisages the epoxidation of the terminal double bond, opening of the epoxide and cleavage between C-2 and C-3 in a manner similar to the periodate oxidation of diol.
Resumo:
The sharp increase in microwave power loss (the reverse of what has previously been reported) at the transition temperature in high-Tc superconducting systems such as YBaCu oxide (polycrystalline bulk and thin films obtained by the laser ablation technique) and BiPbSrCaCu oxide is reported. The differences between DC resistivity ( rho ) and the microwave power loss (related to microwave surface resistance) are analysed from the data obtained by a simultaneous measurement set-up. The influence of various parameters, such as preparation conditions, thickness and aging of the sample and the probing frequency (6-18 GHz), on the variation of microwave power loss with temperature is outlined.
Synthesis, characterization, and thermal degradation studies on group VIA derived weak-link polymers
Resumo:
Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.
Resumo:
The present research work reports the eosin Y (EY) and fluorescein (FL) sensitized visible light degradation of phenol, 4-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) using combustion synthesized nano-TiO2 (CS TiO2). The rate of degradation of the phenolic compounds was higher in the presence of EY/CS TiO2 compared to FL/CS TiO2 system. A detailed mechanism of sensitized degradation was proposed and a mechanistic model for the rate of degradation of the phenolic compound was derived using the pyramidal network reduction technique. It was found that at low initial dye concentrations, the rate of degradation of the phenolic compound is first order in the concentration of the dye, while at high initial dye concentrations, the rate is first order in the concentration of the phenolic compound. The order of degradation of the different phenolic compounds follows: CP > TCP > DCP > phenol. The different phenolic and dye intermediates that were formed during the degradation were identified by liquid chromatography-mass spectrometry (LC-MS) and the most probable pathway of degradation is proposed. (C) 2010 Elsevier B.V. All rights reserved.