982 resultados para Stokes, Teorema de
Resumo:
In the present paper we use a time delay epsilon > 0 for an energy conserving approximation of the nonlinear term of the non-stationary Navier-Stokes equations. We prove that the corresponding initial value problem (N_epsilon)in smoothly bounded domains G \subseteq R^3 is well-posed. Passing to the limit epsilon \rightarrow 0 we show that the sequence of stabilized solutions has an accumulation point such that it solves the Navier-Stokes problem (N_0) in a weak sense (Hopf).
Resumo:
We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.
Resumo:
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
In der vorliegenden Arbeit betrachten wir die Strömung einer zähen, inkompressiblen, instationären Flüssigkeit in einem dreidimensionalen beschränkten Gebiet, deren Verhalten wird mit den instationären Gleichungen von Navier-Stokes beschrieben. Diese Gleichungen gelten für viele wichtige Strömungsprobleme, beispielsweise für Luftströmungen weit unterhalb der Schallgeschwindigkeit, für Wasserströmungen, sowie für flüssige Metalle. Im zweidimensionalen Fall konnten für die Navier-Stokes-Gleichungen bereits weitreichende Existenz-, Eindeutigkeits- und Regularitätsaussagen bewiesen werden. Im allgemeinen dreidimensionalen Fall, falls also die Daten keinen Kleinheitsannahmen unterliegen, hat man bisher lediglich Existenz und Eindeutigkeit zeitlich lokaler starker Lösungen nachgewiesen. Außerdem existieren zeitlich global so genannte schwache Lösungen, deren Regularität für den Nachweis der Eindeutigkeit im dreidimensionalen Fall allerdings nicht ausreicht. Somit bleibt die Lücke zwischen der zeitlich lokalen, eindeutigen starken Lösung und den zeitlich globalen, nicht eindeutigen schwachen Lösungen der Navier-Stokes-Gleichungen im dreidimensionalen Fall weiterhin offen. Das renommierte Clay Mathematics Institute hat dieses Problem zu einem von sieben Millenniumsproblemen erklärt und für seine Lösung eine Million US-Dollar ausgelobt. In der vorliegenden Arbeit wird ein neues Approximationsverfahren für die Navier-Stokes-Gleichungen entwickelt, das auf einer Kopplung der Eulerschen und Lagrangeschen Beschreibung zäher Strömungen beruht.
Resumo:
We consider numerical methods for the compressible time dependent Navier-Stokes equations, discussing the spatial discretization by Finite Volume and Discontinuous Galerkin methods, the time integration by time adaptive implicit Runge-Kutta and Rosenbrock methods and the solution of the appearing nonlinear and linear equations systems by preconditioned Jacobian-Free Newton-Krylov, as well as Multigrid methods. As applications, thermal Fluid structure interaction and other unsteady flow problems are considered. The text is aimed at both mathematicians and engineers.
Resumo:
In the theory of the Navier-Stokes equations, the proofs of some basic known results, like for example the uniqueness of solutions to the stationary Navier-Stokes equations under smallness assumptions on the data or the stability of certain time discretization schemes, actually only use a small range of properties and are therefore valid in a more general context. This observation leads us to introduce the concept of SST spaces, a generalization of the functional setting for the Navier-Stokes equations. It allows us to prove (by means of counterexamples) that several uniqueness and stability conjectures that are still open in the case of the Navier-Stokes equations have a negative answer in the larger class of SST spaces, thereby showing that proof strategies used for a number of classical results are not sufficient to affirmatively answer these open questions. More precisely, in the larger class of SST spaces, non-uniqueness phenomena can be observed for the implicit Euler scheme, for two nonlinear versions of the Crank-Nicolson scheme, for the fractional step theta scheme, and for the SST-generalized stationary Navier-Stokes equations. As far as stability is concerned, a linear version of the Euler scheme, a nonlinear version of the Crank-Nicolson scheme, and the fractional step theta scheme turn out to be non-stable in the class of SST spaces. The positive results established in this thesis include the generalization of classical uniqueness and stability results to SST spaces, the uniqueness of solutions (under smallness assumptions) to two nonlinear versions of the Euler scheme, two nonlinear versions of the Crank-Nicolson scheme, and the fractional step theta scheme for general SST spaces, the second order convergence of a version of the Crank-Nicolson scheme, and a new proof of the first order convergence of the implicit Euler scheme for the Navier-Stokes equations. For each convergence result, we provide conditions on the data that guarantee the existence of nonstationary solutions satisfying the regularity assumptions needed for the corresponding convergence theorem. In the case of the Crank-Nicolson scheme, this involves a compatibility condition at the corner of the space-time cylinder, which can be satisfied via a suitable prescription of the initial acceleration.
Resumo:
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.
Resumo:
Resumen de los autores. Este artículo pertenece a un número en homenaje a Gonzalo Sánchez Vázquez
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Presentación de diferentes juegos relacionados con el teorema de Pitágoras. Así se muestran puzzles y rompecabezas con aplicación en las aulas y que parten de las teorías del matemático griego.
Resumo:
Reflexi??n en torno al teorema de Pit??goras a partir del propio teorema Kou-Ku. Todo ello se relaciona con el estudio general de las matem??ticas.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicación
Resumo:
XII Jornadas de Investigaci??n en el Aula de Matem??ticas : estad??stica y azar, celebradas en Granada, noviembre y diciembre de 2006. Resumen tomado de la publicaci??n