999 resultados para Statistical thermodynamics.
Resumo:
The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs--Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs--Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.
Resumo:
Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.
Resumo:
This report presents the final deliverable from the project titled Conceptual and statistical framework for a water quality component of an integrated report card’ funded by the Marine and Tropical Sciences Research Facility (MTSRF; Project 3.7.7). The key management driver of this, and a number of other MTSRF projects concerned with indicator development, is the requirement for state and federal government authorities and other stakeholders to provide robust assessments of the present ‘state’ or ‘health’ of regional ecosystems in the Great Barrier Reef (GBR) catchments and adjacent marine waters. An integrated report card format, that encompasses both biophysical and socioeconomic factors, is an appropriate framework through which to deliver these assessments and meet a variety of reporting requirements. It is now well recognised that a ‘report card’ format for environmental reporting is very effective for community and stakeholder communication and engagement, and can be a key driver in galvanising community and political commitment and action. Although a report card it needs to be understandable by all levels of the community, it also needs to be underpinned by sound, quality-assured science. In this regard this project was to develop approaches to address the statistical issues that arise from amalgamation or integration of sets of discrete indicators into a final score or assessment of the state of the system. In brief, the two main issues are (1) selecting, measuring and interpreting specific indicators that vary both in space and time, and (2) integrating a range of indicators in such a way as to provide a succinct but robust overview of the state of the system. Although there is considerable research and knowledge of the use of indicators to inform the management of ecological, social and economic systems, methods on how to best to integrate multiple disparate indicators remain poorly developed. Therefore the objective of this project was to (i) focus on statistical approaches aimed at ensuring that estimates of individual indicators are as robust as possible, and (ii) present methods that can be used to report on the overall state of the system by integrating estimates of individual indicators. It was agreed at the outset, that this project was to focus on developing methods for a water quality report card. This was driven largely by the requirements of Reef Water Quality Protection Plan (RWQPP) and led to strong partner engagement with the Reef Water Quality Partnership.
Resumo:
This thesis proposes three novel models which extend the statistical methodology for motor unit number estimation, a clinical neurology technique. Motor unit number estimation is important in the treatment of degenerative muscular diseases and, potentially, spinal injury. Additionally, a recent and untested statistic to enable statistical model choice is found to be a practical alternative for larger datasets. The existing methods for dose finding in dual-agent clinical trials are found to be suitable only for designs of modest dimensions. The model choice case-study is the first of its kind containing interesting results using so-called unit information prior distributions.
Resumo:
There is a wide range of potential study designs for intervention studies to decrease nosocomial infections in hospitals. The analysis is complex due to competing events, clustering, multiple timescales and time-dependent period and intervention variables. This review considers the popular pre-post quasi-experimental design and compares it with randomized designs. Randomization can be done in several ways: randomization of the cluster [intensive care unit (ICU) or hospital] in a parallel design; randomization of the sequence in a cross-over design; and randomization of the time of intervention in a stepped-wedge design. We introduce each design in the context of nosocomial infections and discuss the designs with respect to the following key points: bias, control for nonintervention factors, and generalizability. Statistical issues are discussed. A pre-post-intervention design is often the only choice that will be informative for a retrospective analysis of an outbreak setting. It can be seen as a pilot study with further, more rigorous designs needed to establish causality. To yield internally valid results, randomization is needed. Generally, the first choice in terms of the internal validity should be a parallel cluster randomized trial. However, generalizability might be stronger in a stepped-wedge design because a wider range of ICU clinicians may be convinced to participate, especially if there are pilot studies with promising results. For analysis, the use of extended competing risk models is recommended.
Resumo:
The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na–Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na–HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous–Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls.
Resumo:
This paper addresses research from a three-year longitudinal study that engaged children in data modeling experiences from the beginning school year through to third year (6-8 years). A data modeling approach to statistical development differs in several ways from what is typically done in early classroom experiences with data. In particular, data modeling immerses children in problems that evolve from their own questions and reasoning, with core statistical foundations established early. These foundations include a focus on posing and refining statistical questions within and across contexts, structuring and representing data, making informal inferences, and developing conceptual, representational, and metarepresentational competence. Examples are presented of how young learners developed and sustained informal inferential reasoning and metarepresentational competence across the study to become “sophisticated statisticians”.
Exploring variation in measurement as a foundation for statistical thinking in the elementary school
Resumo:
This study was based on the premise that variation is the foundation of statistics and statistical investigations. The study followed the development of fourth-grade students' understanding of variation through participation in a sequence of two lessons based on measurement. In the first lesson all students measured the arm span of one student, revealing pathways students follow in developing understanding of variation and linear measurement (related to research question 1). In the second lesson each student's arm span was measured once, introducing a different aspect of variation for students to observe and contrast. From this second lesson, students' development of the ability to compare their representations for the two scenarios and explain differences in terms of variation was explored (research question 2). Students' documentation, in both workbook and software formats, enabled us to monitor their engagement and identify their increasing appreciation of the need to observe, represent, and contrast the variation in the data. Following the lessons, a written student assessment was used for judging retention of understanding of variation developed through the lessons and the degree of transfer of understanding to a different scenario (research question 3).
Resumo:
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Resumo:
The relationship between mathematics and statistical reasoning frequently receives comment (Vere-Jones 1995, Moore 1997); however most of the research into the area tends to focus on mathematics anxiety. Gnaldi (2003) showed that in a statistics course for psychologists, the statistical understanding of students at the end of the course depended on students’ basic numeracy, rather than the number or level of previous mathematics courses the student had undertaken. As part of a study into the development of statistical thinking at the interface between secondary and tertiary education, students enrolled in an introductory data analysis subject were assessed regarding their statistical reasoning, basic numeracy skills, mathematics background and attitudes towards statistics. This work reports on some key relationships between these factors and in particular the importance of numeracy to statistical reasoning.
Resumo:
The relationship between mathematics and statistical reasoning frequently receives comment (Vere-Jones 1995, Moore 1997); however most of the research into the area tends to focus on maths anxiety. Gnaldi (Gnaldi 2003) showed that in a statistics course for psychologists, the statistical understanding of students at the end of the course depended on students’ basic numeracy, rather than the number or level of previous mathematics courses the student had undertaken. As part of a study into the development of statistical thinking at the interface between secondary and tertiary education, students enrolled in an introductory data analysis subject were assessed regarding their statistical reasoning ability, basic numeracy skills and attitudes towards statistics. This work reports on the relationships between these factors and in particular the importance of numeracy to statistical reasoning.