966 resultados para Spectral and nonlinear optical characterization
Resumo:
This work reports on the two-photon absorption (2PA) cross-section and first hyperpolarizability of dibenzoylmethane solutions using femtosecond Z-scan and hyper-Rayleigh scattering techniques. The 2PA spectrum, spanning the wavelength range from 460 to 740 nm, presents a band centered at 510 nm, with a cross-section value estimated as 37 GM at this wavelength. Owing to the molecular symmetry, this band is not observed in the linear absorption spectrum. The sum-over-state approach was adopted to evaluate various spectroscopic parameters. Experimental and theoretical values of the first hyperpolarizability values were estimated in ethanol and DMSO solutions.
Resumo:
Die vorliegende Arbeit befaßt sich mit einer Klasse von nichtlinearen Eigenwertproblemen mit Variationsstrukturin einem reellen Hilbertraum. Die betrachteteEigenwertgleichung ergibt sich demnach als Euler-Lagrange-Gleichung eines stetig differenzierbarenFunktionals, zusätzlich sei der nichtlineare Anteil desProblems als ungerade und definit vorausgesetzt.Die wichtigsten Ergebnisse in diesem abstrakten Rahmen sindKriterien für die Existenz spektral charakterisierterLösungen, d.h. von Lösungen, deren Eigenwert gerade miteinem vorgegeben variationellen Eigenwert eines zugehörigen linearen Problems übereinstimmt. Die Herleitung dieserKriterien basiert auf einer Untersuchung kontinuierlicher Familien selbstadjungierterEigenwertprobleme und erfordert Verallgemeinerungenspektraltheoretischer Konzepte.Neben reinen Existenzsätzen werden auch Beziehungen zwischenspektralen Charakterisierungen und denLjusternik-Schnirelman-Niveaus des Funktionals erörtert.Wir betrachten Anwendungen auf semilineareDifferentialgleichungen (sowieIntegro-Differentialgleichungen) zweiter Ordnung. Diesliefert neue Informationen über die zugehörigenLösungsmengen im Hinblick auf Knoteneigenschaften. Diehergeleiteten Methoden eignen sich besonders für eindimensionale und radialsymmetrische Probleme, während einTeil der Resultate auch ohne Symmetrieforderungen gültigist.
Resumo:
The stabilization of nanoparticles against their irreversible particle aggregation and oxidation reactions. is a requirement for further advancement in nanoparticle science and technology. For this reason the research aim on this topic focuses on the synthesis of various metal nanoparticles protected with monolayers containing different reactive head groups and functional tail groups. In this work cuprous bromide nanocrystals haave been synthetized with a diameter of about 20 nanometers according to a new sybthetic method adding dropwise ascorbic acid to a water solution of lithium bromide and cupric chloride under continuous stirring and nitrogen flux. Butane thiolate Cu protected nanoparticles have been synthetized according to three different syntesys methods. Their morphologies appear related to the physicochemical conditions during the synthesis and to the dispersing medium used to prepare the sample. Synthesis method II allows to obtain stable nanoparticles of 1-2 nm in size both isolated and forming clusters. Nanoparticle cluster formation was enhanced as water was used as dispersing medium probably due to the idrophobic nature of the butanethiolate layers coating the nanoparticle surface. Synthesis methods I and III lead to large unstable spherical nanoparticles with size ranging between 20 to 50 nm. These nanoparticles appeared in the TEM micrograph with the same morphology independently on the dispersing medium used in the sample preparation. The stability and dimensions of the copper nanoparticles appear inversely related. Using the same methods above described for the butanethiolate protected copper nanoparticles 4-methylbenzenethiol protected copper nanoparticles have been prepared. Diffractometric and spectroscopic data reveal that decomposition processes didn’t occur in both the 4-methylbenzenethiol copper protected nanoparticles precipitates from formic acid and from water in a period of time six month long. Se anticarcinogenic effects by multiple mechanisms have been extensively investigated and documented and Se is defined a genuine nutritional cancer-protecting element and a significant protective effect of Se against major forms of cancer. Furthermore phloroglucinol was found to possess cytoprotective effects against oxidative stress, thanks to reactive oxygen species (ROS) which are associated with cells and tissue damages and are the contributing factors for inflammation, aging, cancer, arteriosclerosis, hypertension and diabetes. The goal of our work has been to set up a new method to synthesize in mild conditions amorphous Se nanopaticles surface capped with phloroglucinol, which is used during synthesis as reducing agent to obtain stable Se nanoparticles in ethanol, performing the synergies offered by the specific anticarcinogenic properties of Se and the antioxiding ones of phloroalucinol. We have synthesized selenium nanoparticles protected by phenolic molecules chemically bonded to their surface. The phenol molecules coating the nanoparticles surfaces form low ordered arrays as can be seen from the wider shape of the absorptions in the FT-IR spectrum with respect to those appearing in that of crystalline phenol. On the other hand, metallic nanoparticles with unique optical properties, facile surface chemistry and appropriate size scale are generating much enthusiasm in nanomedicine. In fact Au nanoparticles has immense potential for both cancer diagnosis and therapy. Especially Au nanoparticles efficiently convert the strongly adsorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. According to the about, metal nanoparticles-HA nanocrystals composites should have tremendous potential in novel methods for therapy of cancer. 11 mercaptoundecanoic surface protected Au4Ag1 nanoparticles adsorbed on nanometric apathyte crystals we have successfully prepared like an anticancer nanoparticles deliver system utilizing biomimetic hydroxyapatyte nanocrystals as deliver agents. Furthermore natural chrysotile, formed by densely packed bundles of multiwalled hollow nanotubes, is a mineral very suitable for nanowires preparation when their inner nanometer-sized cavity is filled with a proper material. Bundles of chrysotile nanotubes can then behave as host systems, where their large interchannel separation is actually expected to prevent the interaction between individual guest metallic nanoparticles and act as a confining barrier. Chrysotile nanotubes have been filled with molten metals such as Hg, Pb, Sn, semimetals, Bi, Te, Se, and with semiconductor materials such as InSb, CdSe, GaAs, and InP using both high-pressure techniques and metal-organic chemical vapor deposition. Under hydrothermal conditions chrysotile nanocrystals have been synthesized as a single phase and can be utilized as a very suitable for nanowires preparation filling their inner nanometer-sized cavity with metallic nanoparticles. In this research work we have synthesized and characterized Stoichiometric synthetic chrysotile nanotubes have been partially filled with bi and monometallic highly monodispersed nanoparticles with diameters ranging from 1,7 to 5,5 nm depending on the core composition (Au, Au4Ag1, Au1Ag4, Ag). In the case of 4 methylbenzenethiol protected silver nanoparticles, the filling was carried out by convection and capillarity effect at room temperature and pressure using a suitable organic solvent. We have obtained new interesting nanowires constituted of metallic nanoparticles filled in inorganic nanotubes with a inner cavity of 7 nm and an isolating wall with a thick ranging from 7 to 21 nm.
Resumo:
In dieser Arbeit wurde die Elektronenemission von Nanopartikeln auf Oberflächen mittels spektroskopischen Photoelektronenmikroskopie untersucht. Speziell wurden metallische Nanocluster untersucht, als selbstorganisierte Ensembles auf Silizium oder Glassubstraten, sowie ferner ein Metall-Chalcogenid (MoS2) Nanoröhren-Prototyp auf Silizium. Der Hauptteil der Untersuchungen war auf die Wechselwirkung von fs-Laserstrahlung mit den Nanopartikeln konzentriert. Die Energie der Lichtquanten war kleiner als die Austrittsarbeit der untersuchten Proben, so dass Ein-Photonen-Photoemission ausgeschlossen werden konnte. Unsere Untersuchungen zeigten, dass ausgehend von einem kontinuierlichen Metallfilm bis hin zu Clusterfilmen ein anderer Emissionsmechanismus konkurrierend zur Multiphotonen-Photoemission auftritt und für kleine Cluster zu dominieren beginnt. Die Natur dieses neuen Mechanismus` wurde durch verschiedenartige Experimente untersucht. Der Übergang von einem kontinuierlichen zu einem Nanopartikelfilm ist begleitet von einer Zunahme des Emissionsstroms von mehr als eine Größenordnung. Die Photoemissions-Intensität wächst mit abnehmender zeitlicher Breite des Laserpulses, aber diese Abhängigkeit wird weniger steil mit sinkender Partikelgröße. Die experimentellen Resultate wurden durch verschiedene Elektronenemissions-Mechanismen erklärt, z.B. Multiphotonen-Photoemission (nPPE), thermionische Emission und thermisch unterstützte nPPE sowie optische Feldemission. Der erste Mechanismus überwiegt für kontinuierliche Filme und Partikel mit Größen oberhalb von mehreren zehn Nanometern, der zweite und dritte für Filme von Nanopartikeln von einer Größe von wenigen Nanometern. Die mikrospektroskopischen Messungen bestätigten den 2PPE-Emissionsmechanismus von dünnen Silberfilmen bei „blauer“ Laseranregung (hν=375-425nm). Das Einsetzen des Ferminiveaus ist relativ scharf und verschiebt sich um 2hν, wenn die Quantenenergie erhöht wird, wogegen es bei „roter“ Laseranregung (hν=750-850nm) deutlich verbreitert ist. Es zeigte sich, dass mit zunehmender Laserleistung die Ausbeute von niederenergetischen Elektronen schwächer zunimmt als die Ausbeute von höherenergetischen Elektronen nahe der Fermikante in einem Spektrum. Das ist ein klarer Hinweis auf eine Koexistenz verschiedener Emissionsmechanismen in einem Spektrum. Um die Größenabhängigkeit des Emissionsverhaltens theoretisch zu verstehen, wurde ein statistischer Zugang zur Lichtabsorption kleiner Metallpartikel abgeleitet und diskutiert. Die Elektronenemissionseigenschaften bei Laseranregung wurden in zusätzlichen Untersuchungen mit einer anderen Anregungsart verglichen, der Passage eines Tunnelstroms durch einen Metall-Clusterfilm nahe der Perkolationsschwelle. Die elektrischen und Emissionseigenschaften von stromtragenden Silberclusterfilmen, welche in einer schmalen Lücke (5-25 µm Breite) zwischen Silberkontakten auf einem Isolator hergestellt wurden, wurden zum ersten Mal mit einem Emissions-Elektronenmikroskop (EEM) untersucht. Die Elektronenemission beginnt im nicht-Ohmschen Bereich der Leitungsstrom-Spannungskurve des Clusterfilms. Wir untersuchten das Verhalten eines einzigen Emissionszentrums im EEM. Es zeigte sich, dass die Emissionszentren in einem stromleitenden Silberclusterfilm Punktquellen für Elektronen sind, welche hohe Emissions-Stromdichten (mehr als 100 A/cm2) tragen können. Die Breite der Energieverteilung der Elektronen von einem einzelnen Emissionszentrum wurde auf etwa 0.5-0.6 eV abgeschätzt. Als Emissionsmechanismus wird die thermionische Emission von dem „steady-state“ heißen Elektronengas in stromdurchflossenen metallischen Partikeln vorgeschlagen. Größenselektierte, einzelne auf Si-Substraten deponierte MoS2-Nanoröhren wurden mit einer Flugzeit-basierten Zweiphotonen-Photoemissions-Spektromikroskopie untersucht. Die Nanoröhren-Spektren wiesen bei fs-Laser Anregung eine erstaunlich hohe Emissionsintensität auf, deutlich höher als die SiOx Substratoberfläche. Dagegen waren die Röhren unsichtbar bei VUV-Anregung bei hν=21.2 eV. Eine ab-initio-Rechnung für einen MoS2-Slab erklärt die hohe Intensität durch eine hohe Dichte freier intermediärer Zustände beim Zweiphotonen-Übergang bei hν=3.1 eV.
Resumo:
In this work we propose a method for cleaving silicon-based photonic chips by using a laser based micromachining system, consisting of a ND:YVO4laser emitting at 355 nm in nanosecond pulse regime and a micropositioning system. The laser makes grooved marks placed at the desired locations and directions where cleaves have to be initiated, and after several processing steps, a crack appears and propagate along the crystallographic planes of the silicon wafer. This allows cleavage of the chips automatically and with high positioning accuracy, and provides polished vertical facets with better quality than the obtained with other cleaving process, which eases the optical characterization of photonic devices. This method has been found to be particularly useful when cleaving small-sized chips, where manual cleaving is hard to perform; and also for polymeric waveguides, whose facets get damaged or even destroyed with polishing or manual cleaving processing. Influence of length of the grooved line and speed of processing is studied for a variety of silicon chips. An application for cleaving and characterizing sol–gel waveguides is presented. The total amount of light coupled is higher than when using any other procedure.
Resumo:
This paper presents a new hazard-consistent ground motion characterization of the Itoiz dam site, located in Northern Spain. Firstly, we propose a methodology with different approximation levels to the expected ground motion at the dam site. Secondly, we apply this methodology taking into account the particular characteristics of the site and of the dam. Hazard calculations were performed following the Probabilistic Seismic Hazard Assessment method using a logic tree, which accounts for different seismic source zonings and different ground-motion attenuation relationships. The study was done in terms of peak ground acceleration and several spectral accelerations of periods coinciding with the fundamental vibration periods of the dam. In order to estimate these ground motions we consider two different dam conditions: when the dam is empty (T = 0.1 s) and when it is filled with water to its maximum capacity (T = 0.22 s). Additionally, seismic hazard analysis is done for two return periods: 975 years, related to the project earthquake, and 4,975 years, identified with an extreme event. Soil conditions were also taken into account at the site of the dam. Through the proposed methodology we deal with different forms of characterizing ground motion at the study site. In a first step, we obtain the uniform hazard response spectra for the two return periods. In a second step, a disaggregation analysis is done in order to obtain the controlling earthquakes that can affect the dam. Subsequently, we characterize the ground motion at the dam site in terms of specific response spectra for target motions defined by the expected values SA (T) of T = 0.1 and 0.22 s for the return periods of 975 and 4,975 years, respectively. Finally, synthetic acceleration time histories for earthquake events matching the controlling parameters are generated using the discrete wave-number method and subsequently analyzed. Because of the short relative distances between the controlling earthquakes and the dam site we considered finite sources in these computations. We conclude that directivity effects should be taken into account as an important variable in this kind of studies for ground motion characteristics.
Resumo:
In this work we present the results and analysis of a 10 MeV proton irradiation experiment performed on III-V semiconductor materials and solar cells. A set of representative devices including lattice-matched InGaP/GaInAs/Ge triple junction solar cells and single junction GaAs and InGaP component solar cells and a Ge diode were irradiated for different doses. The devices were studied in-situ before and after each exposure at dark and 1 sun AM0 illumination conditions, using a solar simulator connected to the irradiation chamber through a borosilicate glass window. Ex-situ characterization techniques included dark and 1 sun AM0 illumination I-V measurements. Furthermore, numerical simulation of the devices using D-AMPS-1D code together with calculations based on the TRIM software were performed in order to gain physical insight on the experimental results. The experiment also included the proton irradiation of an unprocessed Ge solar cell structure as well as the irradiation of a bare Ge(100) substrate. Ex-situ material characterization, after radioactive deactivation of the samples, includes Raman spectroscopy and spectral reflectivity.
Resumo:
As a second-order nonlinear optical process, sum-frequency generation is highly surface-specific and accordingly has been developed into a very powerful and versatile surface spectroscopic tool. It has found many unique applications in different disciplines and thus provided many exciting new research opportunities in surface and surface-related science. Selected examples are discussed here to illustrate the power of the technique.
Resumo:
Observation of autosoliton propagation in a dispersion-managed optical transmission system controlled by in-line nonlinear fiber loop switches is reported for what is believed to be the first time. The system is based on a strong dispersion map with large amplifier spacing. Operation at transmission rates of 10 and 40 Gbits/s is demonstrated. ©2004 Optical Society of America.
Resumo:
We demonstrate bandpass nonlinear switching, using a novel device configuration based on a nonlinear-optical loop mirror and an in-fiber Bragg grating. Self-switching is demonstrated in the soliton regime by use of an asymmetrically arranged in-fiber Bragg grating as a wavelength-selective element. In addition, we adapt the configuration to perform efficient two-wavelength switching.
Resumo:
We propose the use of a dispersive medium with a negative nonlinear refractive-index coefficient as a way to compensate for the dispersion and the nonlinear effects resulting from pulse propagation in an optical fiber. The undoing of pulse interaction might allow for increased bit rates.
Resumo:
The authors show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.
Resumo:
We show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, that 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.
Resumo:
We investigate the use of nonlinear optical loop mirrors as saturable absorbers in picosecond soliton transmission systems. It is found that they allow short (1–5-ps) pulses to be propagated through chains of optical amplifiers spaced at intervals of typically 10 km. The loop mirror removes dispersive waves and stabilizes the peak amplitude of the soliton. An additional advantage is that the self-frequency shift of the soliton may be suppressed by bandwidth filtering without causing growth of dispersive waves at the center of the passband. The timing jitter and soliton interactions present in the scheme are also described.