813 resultados para Sistemas lineares realimentados - Controle
Resumo:
O comportamento dinâmico de um sistema é tradicionalmente descrito por um modelo, em geral associado a um conjunto de equações diferenciais ou de equações de diferenças, onde as variáveis representam grandezas físicas. Sistemas complexos, principalmente na indústria de processos, incorporam elementos com comportamento dinâmico lógico, tais como atuadores e sensores ON-OFF (estados aberto/fechado) ou proposições lógicas (estados verdadeiro/falso). Estes sistemas são denominados “Sistemas Híbridos”, “Sistemas Mistos Lógicos-dinâmicos” ou, simplesmente, “Sistemas Mistos”. Neste trabalho, são apresentadas técnicas que, associando variáveis lógicas a estes elementos, e mediante a incorporação de restrições sobre as variáveis, permitem obter um modelo matemático do sistema misto. Neste caso, técnicas clássicas de controle não permitem a incorporação destas novas variáves e restrições. Como opção de controle de sistemas mistos, é então proposta e estudada uma técnica de controle preditivo baseado em modelo. São apresentados tanto a formulação teórica do problema de controle, quanto exemplos e simulações bem como um estudo de caso de sua aplicação sobre um sistema de equalização de uma planta de tratamento de efluentes.
Resumo:
The Predictive Controller has been receiving plenty attention in the last decades, because the need to understand, to analyze, to predict and to control real systems has been quickly growing with the technological and industrial progress. The objective of this thesis is to present a contribution for the development and implementation of Nonlinear Predictive Controllers based on Hammerstein model, as well as to its make properties evaluation. In this case, in the Nonlinear Predictive Controller development the time-step linearization method is used and a compensation term is introduced in order to improve the controller performance. The main motivation of this thesis is the study and stability guarantee for the Nonlinear Predictive Controller based on Hammerstein model. In this case, was used the concepts of sections and Popov Theorem. Simulation results with literature models shows that the proposed approaches are able to control with good performance and to guarantee the systems stability
Resumo:
This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification
Resumo:
The present work is based on the applied bilinear predictive control applied to an induction motor. As in particular case of the technique based on predictive control in nonlinem systems, these have desperted great interest, a time that present the advantage of being simpler than the non linear in general and most representative one than the linear one. One of the methods, adopted here, uses the linear model "quasi linear for step of time" based in Generalized Predictive Control. The modeling of the induction motor is made by the Vectorial control with orientation given for the indirect rotor. The system is formed by an induction motor of 3 cv with rotor in squirregate, set in motion for a group of benches of tests developed for this work, presented resulted for a variation of +5% in the value of set-point and for a variation of +10% and -10% in the value of the applied nominal load to the motor. The results prove a good efficiency of the predictive bilinear controllers, then compared with the linear cases
Resumo:
An alternative nonlinear technique for decoupling and control is presented. This technique is based on a RBF (Radial Basis Functions) neural network and it is applied to the synchronous generator model. The synchronous generator is a coupled system, in other words, a change at one input variable of the system, changes more than one output. The RBF network will perform the decoupling, separating the control of the following outputs variables: the load angle and flux linkage in the field winding. This technique does not require knowledge of the system parameters and, due the nature of radial basis functions, it shows itself stable to parametric uncertainties, disturbances and simpler when it is applied in control. The RBF decoupler is designed in this work for decouple a nonlinear MIMO system with two inputs and two outputs. The weights between hidden and output layer are modified online, using an adaptive law in real time. The adaptive law is developed by Lyapunov s Method. A decoupling adaptive controller uses the errors between system outputs and model outputs, and filtered outputs of the system to produce control signals. The RBF network forces each outputs of generator to behave like reference model. When the RBF approaches adequately control signals, the system decoupling is achieved. A mathematical proof and analysis are showed. Simulations are presented to show the performance and robustness of the RBF network
Resumo:
This work addresses the dynamic control problem of two-wheeled differentially driven non-holonomic mobile robot. Strategies for robot positioning control and robot orientating control are presented. Such strategies just require information about the robot con¯guration (x, y and teta), which can be collected by an absolute positioning system. The strategies development is related to a change on the controlled variables for such systems, from x, y and teta to s (denoting the robot linear displacement) and teta, and makes use of the polar coordinates representation for the robot kinematic model. Thus, it is possible to obtain a linear representation for the mobile robot dynamic model and to develop such strategies. It is also presented that such strategies allow the use of linear controllers to solve the control problem. It is shown that there is flexibility to choice the linear controller (P, PI, PID, Model Matching techniques, others) to be implemented. This work presents an introduction to mobile robotics and their characteristics followed by the control strategies development and controllers design. Finally, simulated and experimental results are presented and commented
Resumo:
The need to implement a software architecture that promotes the development of a SCADA supervisory system for monitoring industrial processes simulated with the flexibility of adding intelligent modules and devices such as CLP, according to the specifications of the problem, it was the motivation for this work. In the present study, we developed an intelligent supervisory system on a simulation of a distillation column modeled with Unisim. Furthermore, OLE Automation was used as communication between the supervisory and simulation software, which, with the use of the database, promoted an architecture both scalable and easy to maintain. Moreover, intelligent modules have been developed for preprocessing, data characteristics extraction, and variables inference. These modules were fundamentally based on the Encog software
Resumo:
Slugging is a well-known slugging phenomenon in multiphase flow, which may cause problems such as vibration in pipeline and high liquid level in the separator. It can be classified according to the place of its occurrence. The most severe, known as slugging in the riser, occurs in the vertical pipe which feeds the platform. Also known as severe slugging, it is capable of causing severe pressure fluctuations in the flow of the process, excessive vibration, flooding in separator tanks, limited production, nonscheduled stop of production, among other negative aspects that motivated the production of this work . A feasible solution to deal with this problem would be to design an effective method for the removal or reduction of the system, a controller. According to the literature, a conventional PID controller did not produce good results due to the high degree of nonlinearity of the process, fueling the development of advanced control techniques. Among these, the model predictive controller (MPC), where the control action results from the solution of an optimization problem, it is robust, can incorporate physical and /or security constraints. The objective of this work is to apply a non-conventional non-linear model predictive control technique to severe slugging, where the amount of liquid mass in the riser is controlled by the production valve and, indirectly, the oscillation of flow and pressure is suppressed, while looking for environmental and economic benefits. The proposed strategy is based on the use of the model linear approximations and repeatedly solving of a quadratic optimization problem, providing solutions that improve at each iteration. In the event where the convergence of this algorithm is satisfied, the predicted values of the process variables are the same as to those obtained by the original nonlinear model, ensuring that the constraints are satisfied for them along the prediction horizon. A mathematical model recently published in the literature, capable of representing characteristics of severe slugging in a real oil well, is used both for simulation and for the project of the proposed controller, whose performance is compared to a linear MPC
Resumo:
Atualmente há uma grande preocupação em relação a substituição das fontes não renováveis pelas fontes renováveis na geração de energia elétrica. Isto ocorre devido a limitação do modelo tradicional e da crescente demanda. Com o desenvolvimento dos conversores de potência e a eficácia dos esquemas de controle, as fontes renováveis têm sido interligadas na rede elétrica, em um modelo de geração distribuída. Neste sentido, este trabalho apresenta uma estratégia de controle não convencional, com a utilização de um controlador robusto, para a interconexão de sistemas fotovoltaicos com à rede elétrica trifásica. A compensação da qualidade de energia no ponto de acoplamento comum (PAC) é realizada pela estratégia proposta. As técnicas tradicionais utilizam detecção de harmônicos, já neste trabalho o controle das correntes é feita de uma forma indireta sem a necessidade desta detecção. Na estratégia indireta é de grande importância que o controle da tensão do barramento CC seja efetuado de uma forma que não haja grandes flutuações, e que a banda passante do controlador em regime permanente seja baixa para que as correntes da rede não tenham um alto THD. Por este motivo é utilizado um controlador em modo dual DSM-PI, que durante o transitório se comporta como um controlador em modo deslizante SM-PI, e em regime se comporta como um PI convencional. A corrente é alinhada ao ângulo de fase do vetor tensão da rede elétrica, obtido a partir do uso de um PLL. Esta aproximação permite regular o fluxo de potência ativa, juntamente com a compensação dos harmônicos e também promover a correção do fator de potência no ponto de acoplamento comum. Para o controle das correntes é usado um controlador dupla sequencia, que utiliza o princípio do modelo interno. Resultados de simulação são apresentados para demonstrar a eficácia do sistema de controle proposto
Resumo:
This work presents an algorithm for the security control of electric power systems using control actions like generation reallocation, determined by sensitivity analysis (linearized model) and optimization by neural networks. The model is developed taking into account the dynamic network aspects. The preventive control methodology is developed by means of sensitivity analysis of the security margin related with the mechanical power of the system synchronous machines. The reallocation power in each machine is determined using neural networks. The neural network used in this work is of Hopfield type. These networks are dedicated electric circuits which simulate the constraint set and the objective function of an optimization problem. The advantage of using these networks is the higher speed in getting the solutions when compared to conventional optimization algorithms due to the great convergence rate of the process and the facility of the method parallelization. Then, the objectives are: formulate and investigate these networks implementations in determining. The generation reallocation in digital computers. Aiming to illustrate the proposed methodology an application considering a multi-machine system is presented.
Resumo:
A systematic procedure of zero placement to design control systems is proposed. A state feedback controller with vector gain K is used to perform the pole placement. An estimator with vector gain L is also designed for output feedback control. A new systematic method of zero assignment to reduce the effect of the undesirable poles of the plant and also to increase the velocity error constant is presented. The methodology places the zeros in a specific region and it is based on Linear Matrix Inequalities (LMIs) framework, which is a new approach to solve this problem. Three examples illustrate the effectiveness of the proposed method.
Resumo:
The maintenance of a given body orientation is obtained by the complex relation between sensory information and muscle activity. Therefore, this study purpose was to review the role of visual, somatosensory, vestibular and auditory information in the maintenance and control of the posture. Method. a search by papers for the last 24 years was done in the PubMed and CAPES databases. The following keywords were used: postural control, sensory information, vestibular system, visual system, somatosensory system, auditory system and haptic system. Results. the influence of each sensory system and its integration were analyzed for the maintenance and control of the posture. Conclusion. the literature showed that there is information redundancy provided by sensory channels. Thus, the central nervous system chooses the main source for the posture control.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)