919 resultados para Signal acquisitions
Resumo:
Fractal Dimensions (FD) are one of the popular measures used for characterizing signals. They have been used as complexity measures of signals in various fields including speech and biomedical applications. However, proper interpretation of such analyses has not been thoroughly addressed. In this paper, we study the effect of various signal properties on FD and interpret results in terms of classical signal processing concepts such as amplitude, frequency, number of harmonics, noise power and signal bandwidth. We have used Higuchi's method for estimating FDs. This study may help in gaining a better understanding of the FD complexity measure itself, and for interpreting changing structural complexity of signals in terms of FD. Our results indicate that FD is a useful measure in quantifying structural changes in signal properties.
Resumo:
The design of a dual-DSP microprocessor system and its application for parallel FFT and two-dimensional convolution are explained. The system is based on a master-salve configuration. Two ADSP-2101s are configured as slave processors and a PC/AT serves as the master. The master serves as a control processor to transfer the program code and data to the DSPs. The system architecture and the algorithms for the two applications, viz. FFT and two-dimensional convolutions, are discussed.
Resumo:
This paper describes the work related to characterisation of an ultrasonic transducer fabricated in the laboratory. The response of the medium to the ultrasonic wave was obtained by converting the time domain signal to frequency domain, using the FFT algorithm. Cross-correlation technique was adopted to increase the S/N ratio in the raw time domain signal and subsequently, to determine the ultrasonic velocity in the medium.
Resumo:
Unlike queens of typical primitively eusocial species, Ropalidia marginata queens are docile and non-interactive, and hence cannot be using dominance to maintain their status. It appears that the queen maintains reproductive monopoly through a pheromone, of which the Dufour's gland is at least one source. Here, we reconfirm earlier results showing that queens and workers can be correctly classified on a discriminant function using the compositions of their respective Dufour's glands, and also demonstrate consistent queen-worker differences based on categories of compounds and on single compounds also in some cases. Since the queen pheromone is expected to be an honest signal of the fecundity of a queen, we investigate the correlation of Dufour's gland compounds with ovarian activation of queens. Our study shows that Dufour's gland compounds in R. marginata correlate with the state of ovarian activation of queens, suggesting that such compounds may portray the fecundity of a queen, and may indeed function as honest signals of fertility.
Resumo:
A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of `FBG length-refractive index strength' combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This article acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.
Resumo:
Queens of the primitively eusocial wasp Ropalidia marginata appear to maintain reproductive monopoly through pheromone rather than through physical aggression. Upon queen removal, one of the workers (potential queen, PQ) becomes extremely aggressive but drops her aggression immediately upon returning the queen. If the queen is not returned, the PQ gradually drops her aggression and becomes the next queen of the colony. In a previous study, the Dufour's gland was found to be at least one source of the queen pheromone. Queen-worker classification could be done with 100% accuracy in a discriminant analysis, using the compositions of their respective Dufour's glands. In a bioassay, the PQ dropped her aggression in response to the queen's Dufour's gland macerate, suggesting that the queen's Dufour's gland contents mimicked the queen herself. In the present study, we found that the PQ also dropped her aggression in response to the macerate of a foreign queen's Dufour's gland. This suggests that the queen signal is perceived across colonies. This also suggests that the Dufour's gland in R. marginata does not contain information about nestmateship, because queens are attacked when introduced into foreign colonies, and hence PQ is not expected to reduce her aggression in response to a foreign queen's signal. The latter conclusion is especially significant because the Dufour's gland chemicals are adequate to classify individuals correctly not only on the basis of fertility status (queen versus worker) but also according to their colony membership, using discriminant analysis. This leads to the additional conclusion (and precaution) that the ability to statistically discriminate organisms using their chemical profiles does not necessarily imply that the organisms themselves can make such discrimination. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we show the limitations of the traditional charge linearization techniques for modeling terminal charges of the independent double-gate metal-oxide-semiconductor field-effect transistors. Based on our recent computationally efficient Poisson solution for independent double gate transistors, we propose a new charge linearization technique to model the terminal charges and transcapacitances. We report two different types of quasistatic large-signal models for the long-channel device. In the first type, the terminal charges are expressed as closed-form functions of the source- and drain-end inversion charge densities and found to be accurate when the potential distribution at source end of the channel is hyperbolic in nature. The second type, which is found to be accurate in all regimes of operations, is based on the quadratic spline collocation technique and requires the input voltage equation to be solved two more times, apart from the source and drain ends.
Resumo:
We address the problem of computing the level-crossings of an analog signal from samples measured on a uniform grid. Such a problem is important, for example, in multilevel analog-to-digital (A/D) converters. The first operation in such sampling modalities is a comparator, which gives rise to a bilevel waveform. Since bilevel signals are not bandlimited, measuring the level-crossing times exactly becomes impractical within the conventional framework of Shannon sampling. In this paper, we propose a novel sub-Nyquist sampling technique for making measurements on a uniform grid and thereby for exactly computing the level-crossing times from those samples. The computational complexity of the technique is low and comprises simple arithmetic operations. We also present a finite-rate-of-innovation sampling perspective of the proposed approach and also show how exponential splines fit in naturally into the proposed sampling framework. We also discuss some concrete practical applications of the sampling technique.
Resumo:
It is possible to sample signals at sub-Nyquist rate and still be able to reconstruct them with reasonable accuracy provided they exhibit local Fourier sparsity. Underdetermined systems of equations, which arise out of undersampling, have been solved to yield sparse solutions using compressed sensing algorithms. In this paper, we propose a framework for real time sampling of multiple analog channels with a single A/D converter achieving higher effective sampling rate. Signal reconstruction from noisy measurements on two different synthetic signals has been presented. A scheme of implementing the algorithm in hardware has also been suggested.
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.
Resumo:
Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed, A brief overview of Genetic Algorithms (GAs) and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance pf our GA-based approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger. To account for the relatively quick convergence of the gradient descent methods, we analyze the landscape of the COP-based cost function. We prove that the cost function is unimodal in the search space. This feature makes the cost function amenable to optimization by gradient-descent techniques as compared to random search methods such as Genetic Algorithms.
Resumo:
We propose, for the first time, a reinforcement learning (RL) algorithm with function approximation for traffic signal control. Our algorithm incorporates state-action features and is easily implementable in high-dimensional settings. Prior work, e. g., the work of Abdulhai et al., on the application of RL to traffic signal control requires full-state representations and cannot be implemented, even in moderate-sized road networks, because the computational complexity exponentially grows in the numbers of lanes and junctions. We tackle this problem of the curse of dimensionality by effectively using feature-based state representations that use a broad characterization of the level of congestion as low, medium, or high. One advantage of our algorithm is that, unlike prior work based on RL, it does not require precise information on queue lengths and elapsed times at each lane but instead works with the aforementioned described features. The number of features that our algorithm requires is linear to the number of signaled lanes, thereby leading to several orders of magnitude reduction in the computational complexity. We perform implementations of our algorithm on various settings and show performance comparisons with other algorithms in the literature, including the works of Abdulhai et al. and Cools et al., as well as the fixed-timing and the longest queue algorithms. For comparison, we also develop an RL algorithm that uses full-state representation and incorporates prioritization of traffic, unlike the work of Abdulhai et al. We observe that our algorithm outperforms all the other algorithms on all the road network settings that we consider.
Resumo:
The interest in low bit rate video coding has increased considerably. Despite rapid progress in storage density and digital communication system performance, demand for data-transmission bandwidth and storage capacity continue to exceed the capabilities of available technologies. The growth of data-intensive digital audio, video applications and the increased use of bandwidth-limited media such as video conferencing and full motion video have not only sustained the need for efficient ways to encode analog signals, but made signal compression central to digital communication and data-storage technology. In this paper we explore techniques for compression of image sequences in a manner that optimizes the results for the human receiver. We propose a new motion estimator using two novel block match algorithms which are based on human perception. Simulations with image sequences have shown an improved bit rate while maintaining ''image quality'' when compared to conventional motion estimation techniques using the MAD block match criteria.