496 resultados para SiRNA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently attracted attention as a potential therapeutic agent in the treatment of cancer. We assessed the roles of p53, TRAIL receptors, and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (c-FLIP) in regulating the cytotoxic effects of recombinant TRAIL (rTRAIL) alone and in combination with chemotherapy [5-fluorouracil (5-FU), oxaliplatin, and irinotecan] in a panel of colon cancer cell lines. Using clonogenic survival and flow cytometric analyses, we showed that chemotherapy sensitized p53 wild-type, mutant, and null cell lines to TRAIL-mediated apoptosis. Although chemotherapy treatment did not modulate mRNA or cell surface expression of the TRAIL receptors death receptor 4, death receptor 5, decoy receptor 1, or decoy receptor 2, it was found to down-regulate expression of the caspase-8 inhibitor, c-FLIP. Stable overexpression of the long c-FLIP splice form but not the short form was found to inhibit chemotherapy/rTRAIL-induced apoptosis. Furthermore, siRNA-mediated down-regulation of c-FLIP, particularly the long form, was found to sensitize colon cancer cells to rTRAIL-induced apoptosis. In addition, treatment of a 5-FU-resistant cell line with 5-FU down-regulated c-FLIP expression and sensitized the chemotherapy-resistant cell line to rTRAIL. We conclude that TRAIL-targeted therapies may be used to enhance conventional chemotherapy regimens in colon cancer regardless of tumor p53 status. Furthermore, inhibition of c-FLIP may be a vital accessory strategy for the optimal use of TRAIL-targeted therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

c-FLIP inhibits caspase 8 activation and apoptosis mediated by death receptors such as Fas and DR5. We studied the effect of c-FLIP on the apoptotic response to chemotherapies used in colorectal cancer (CRC) (5-fluorouracil, oxaliplatin and irinotecan). Simultaneous downregulation of both c-FLIP splice forms c-FLIP(L) and c-FLIP(S) with siRNA synergistically enhanced chemotherapy-induced apoptosis in p53 wild-type (HCT116p53(+/+), RKO), null (HCT116p53(-/-)) and mutant (H630) CRC cell lines. Furthermore, overexpression of c-FLIP(L), but not c-FLIP(S), potently inhibited apoptosis induced by chemotherapy in HCT116p53(+/+) cells, suggesting that c-FLIP(L) was the more important splice form in mediating chemoresistance. In support of this, siRNA specifically targeted against c-FLIP(L) synergistically enhanced chemotherapy-induced apoptosis in a manner similar to the siRNA targeted against both splice forms. Inhibition of caspase 8 blocked the enhanced apoptosis induced by c-FLIP-targeted (FT) siRNA and chemotherapy. Furthermore, we found that downregulating cell surface DR5, but not Fas, also inhibited apoptosis induced by FT siRNA and chemotherapy. Interestingly, these effects were not dependent on activation of DR5 by its ligand TRAIL. These results indicate that c-FLIP inhibits TRAIL-independent, DR5- and caspase 8-dependent apoptosis in response to chemotherapy in CRC cells. Moreover, targeting c-FLIP in combination with existing chemotherapies may have therapeutic potential for the treatment of CRC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the role of p53 and the signal transducer and activator of transcription 1 (STAT1) in regulating Fas-mediated apoptosis in response to chemotherapies used to treat colorectal cancer. We found that 5-fluorouracil (5-FU) and oxaliplatin only sensitized p53 wild-type (WT) colorectal cancer cell lines to Fas-mediated apoptosis. In contrast, irinotecan (CPT-11) and tomudex sensitized p53 WT, mutant, and null cells to Fas-mediated cell death. Furthermore, CPT-11 and tomudex, but not 5-FU or oxaliplatin, up-regulated Fas cell surface expression in a p53-independent manner. In addition, increased Fas cell surface expression in p53 mutant and null cell lines in response to CPT-11 and tomudex was accompanied by only a slight increase in total Fas mRNA and protein expression, suggesting that these agents trigger p53-independent trafficking of Fas to the plasma membrane. Treatment with CPT-11 or tomudex induced STAT1 phosphorylation (Ser727) in the p53-null HCT116 cell line but not the p53 WT cell line. Furthermore, STAT1-targeted small interfering RNA (siRNA) inhibited up-regulation of Fas cell surface expression in response to CPT-11 and tomudex in these cells. However, we found no evidence of altered Fas gene expression following siRNA-mediated down-regulation of STAT1 in drug-treated cells. This suggests that STAT1 regulates expression of gene(s) involved in cell surface trafficking of Fas in response to CPT-11 or tomudex. We conclude that CPT-11 and tomudex may be more effective than 5-FU and oxaliplatin in the treatment of p53 mutant colorectal cancer tumors by sensitizing them to Fas-mediated apoptosis in a STAT1-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key tenets of modern biology are the central place of protein in cell regulation and the flow of genetic information from DNA to RNA to protein. However, it is becoming increasingly apparent that genomes are much more complex than hitherto thought with remarkably complex regulatory systems. The notion that the fraction of the genome involved in coding protein is all that matters is increasingly being questioned as the roles of non-coding RNA (ncRNA) in cellular systems becomes recognised. The RNA world, including microRNA (miRNA), small inhibitory RNA (siRNA) and other RNA species, are now recognised as being crucial for the regulation of chromatin structure, gene expression, mRNA processing and splicing, mRNA stability and translational control. Furthermore such ncRNA systems may be perturbed in disease states and most notably in neoplasia, including in haematological malignancies. Here the burgeoning evidence for a role of miRNA in neoplasia is reviewed and the importance of understanding the RNA world emphasised. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combination treatment regimens that include topoisomerase-II-targeted drugs, such as doxorubicin, are widely used in the treatment of breast cancer. Previously, we demonstrated that IFN-� and doxorubicin co-treatment synergistically induced apoptosis in MDA435 breast cancer cells in a STAT1-dependent manner. In this study, we found that this synergy was caspase 8-dependent. In addition, we found that IFN-γ down-regulated the expression of the caspase 8 inhibitor c-FLIP. Furthermore, IFN-� down-regulated c-FLIP in a manner that was dependent on the transcription factors STAT1 and IRF1. However, IFN-� had no effect on c-FLIP mRNA levels, indicating that c-FLIP was down-regulated at a post-transcriptional level following IFN-� treatment. Characterisation of the functional significance of c-FLIP modulation by siRNA gene silencing and stable over-expression studies, revealed it to be a key regulator of IFN-γ- and doxorubicin-induced apoptosis in MDA435 cells. Analysis of a panel of breast cancer cell lines indicated that c-FLIP was an important general determinant of doxorubicin- and IFN-�-induced apoptosis in breast cancer cells. Furthermore, c-FLIP gene silencing sensitised MDA435 cells to other chemotherapies, including etoposide, mitoxantrone and SN-38. These results suggest that c-FLIP plays a pivotal role in modulating drug-induced apoptosis in breast cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

c-FLIP is an inhibitor of apoptosis mediated by the death receptors Fas, DR4 and DR5 and is expressed as long (c-FLIPL) and short (c-FLIPS) splice forms. We found that siRNA-mediated silencing of c-FLIP induced spontaneous apoptosis in a panel of p53 wild-type, mutant and null colorectal cancer (CRC) cell lines and that this apoptosis was mediated by caspase 8 and FADD. Further analyses indicated the involvement of DR5 and/or Fas (but not DR4) in regulating apoptosis induced by c-FLIP siRNA. Interestingly, these effects were not dependent on activation of DR5 or Fas by their ligands TRAIL and FasL. Overexpression of c-FLIPL, but not c-FLIPS, significantly decreased spontaneous and chemotherapy-induced apoptosis in HCT116 cells. Further analyses with splice form-specific siRNAs indicated that c-FLIPL was the more important splice form in regulating apoptosis in HCT116, H630 and LoVo cells, although specific knock down of c-FLIPS induced more apoptosis in the HT29 cell line. Importantly, intra-tumoral delivery of c-FLIP-targeted siRNA duplexes induced apoptosis and inhibited the growth of HCT116 xenografts in Balb/c SCID mice. In addition, the growth of c-FLIPL overexpressing CRC xenografts was more rapid than control xenografts, an effect that was significantly enhanced in the presence of chemotherapy. These results indicate that c-FLIP inhibits spontaneous death ligand-independent, death receptor-mediated apoptosis in CRC cells and that targeting c-FLIP may have therapeutic potential for the treatment of colorectal cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoxic cancer cells are resistant to treatment, leading to the selection of cells with a more malignant phenotype. The expression of interleukin-8 (IL-8) plays an important role in the tumorigenesis and metastasis of solid tumors including prostate cancer. Recently, we detected elevated expression of IL-8 and IL-8 receptors in human prostate cancer tissue. The objective of the current study was to determine whether hypoxia increases IL-8 and IL-8 receptor expression in prostate cancer cells and whether this contributes to a survival advantage in hypoxic cells. IL-8, CXCR1 and CXCR2 messenger RNA (mRNA) expression in PC3 cells was upregulated in response to hypoxia in a time-dependent manner. Elevated IL-8 secretion following hypoxia was detected by enzyme-linked immunosorbent assay, while immunoblotting confirmed elevated receptor expression. Attenuation of hypoxia-inducible factor (HIF-1) and nuclear factor-kappaB (NF-kappaB) transcriptional activity using small interfering RNA (siRNA), a HIF-1 dominant-negative and pharmacological inhibitors, abrogated hypoxia-induced transcription of CXCR1 and CXCR2 in PC3 cells. Furthermore, chromatin-IP analysis demonstrated binding of HIF-1 and NF-kappaB to CXCR1. Finally, inhibition of IL-8 signaling potentiated etoposide-induced cell death in hypoxic PC3 cells. These results suggest that IL-8 signaling confers a survival advantage to hypoxic prostate cancer cells, and therefore, strategies to inhibit IL-8 signaling may sensitize hypoxic tumor cells to conventional treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background BRCA1-mutant breast tumors are typically estrogen receptor alpha (ER alpha) negative, whereas most sporadic tumors express wild-type BRCA1 and are ER alpha positive. We examined a possible mechanism for the observed ER alpha-negative phenotype of BRCA1-mutant tumors.

Methods We used a breast cancer disease-specific microarray to identify transcripts that were differentially expressed between paraffin-embedded samples of 17 BRCA1-mutant and 14 sporadic breast tumors. We measured the mRNA levels of estrogen receptor 1 (ESR1) ( the gene encoding ER alpha), which was differentially expressed in the tumor samples, by quantitative polymerase chain reaction. Regulation of ESR1 mRNA and ER alpha protein expression was assessed in human breast cancer HCC1937 cells that were stably reconstituted with wild-type BRCA1 expression construct and in human breast cancer T47D and MCF-7 cells transiently transfected with BRCA1-specific short-interfering RNA ( siRNA). Chromatin immunoprecipitation assays were performed to determine if BRCA1 binds the ESR1 promoter and to identify other interacting proteins. Sensitivity to the antiestrogen drug fulvestrant was examined in T47D and MCF-7 cells transfected with BRCA1-specific siRNA. All statistical tests were two-sided.

Results Mean ESR1 gene expression was 5.4-fold lower in BRCA1-mutant tumors than in sporadic tumors ( 95% confidence interval [CI]=2.6-fold to 40.1-fold, P =.0019). The transcription factor Oct-1 recruited BRCA1 to the ESR1 promoter, and both BRCA1 and Oct-1 were required for ER alpha expression. BRCA1-depleted breast cancer cells expressing exogenous ER alpha were more sensitive to fulvestrant than BRCA1-depleted cells transfected with empty vector ( T47D cells, the mean concentration of fulvestrant that inhibited the growth of 40% of the cells [IC40] for empty vector versus ER alpha: > 10(-5) versus 8.0 x 10(-9) M [ 95% CI=3.1x10(-10) to 3.2 x 10(-6) M]; MCF-7 cells, mean IC40 for empty vector versus ER alpha : > 10(-5) versus 4.9 x 10(-8) M [ 95% CI=2.0 x 10(-9) to 3.9 x 10(-6) M]).

Conclusions BRCA1 alters the response of breast cancer cells to antiestrogen therapy by directly modulating ER alpha expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maintenance of oxygen homeostasis is a key requirement to ensure normal mammalian cell growth and differentiation. Hypoxia arises when oxygen demand exceeds supply, and is a feature of multiple human diseases including stroke, cancer and renal fibrosis. We have investigated the effect of hypoxia on kidney cells, and observed that insulin-induced cell viability is increased in hypoxia. We have characterized the role of protein kinase B (PKB/ Akt) in these cells as a potential mediator of this effect. PKB/Akt activity was increased by low oxygen concentrations in kidney cells, and insulin-stimulated activation of PKB/Akt was stronger, more rapid and more sustained in hypoxia. Reduction of HIF1 alpha levels using antimycin-A or siRNA targeting HlF1 alpha did not affect PKB/Akt activation in hypoxia. Pharmacologic stabilization of HIF1 alpha independent of hypoxia did not increase insulin-stimulated PKB/Akt activation. Although increased insulin-stimulated cell viability was observed in hypoxia, no differences in the degree of insulin-stimulated glucose uptake were observed in L6 muscle cells in hypoxia compared to normoxia. Thus, PKB/Akt may regulate specific cellular responses to growth factors such as insulin under adverse conditions such as hypoxia. alpha 2007 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFa and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NF?B was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle. The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III and facilitates their transcription in cells. Our findings indicate that, beyond the established role in Pol II transcription, FACT has physiological functions in chromatin transcription by all three nuclear RNA Pols. Our data also imply that local chromatin dynamics influence transcription of the active rRNA genes by Pol I and of Pol III-transcribed genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: We describe key components of normal and aberrant death receptor pathways, the association of these abnormalities with tumorigenesis in bladder, prostate and renal cancer, and their potential application in novel therapeutic strategies targeted toward patients with cancer.

MATERIALS AND METHODS: A MEDLINE literature search of the key words death receptors, TRAIL (tumor necrosis factor related apoptosis inducing ligand), FAS, bladder, prostate, renal and cancer was done to obtain information for review. A brief overview of the TRAIL and FAS death receptor pathways, and their relationship to apoptosis is described. Mechanisms that lead to nonfunction of these pathways and how they may contribute to tumorigenesis are linked. Current efforts to target death receptor pathways as a therapeutic strategy are highlighted.

RESULTS: Activation of tumor cell expressing death receptors by cytotoxic immune cells is the main mechanism by which the immune system eliminates malignant cells. Death receptor triggering induces a caspase cascade, leading to tumor cell apoptosis. Receptor gene mutation or hypermethylation, decoy receptor or splice variant over expression, and downstream inhibitor interference are examples of the ways that normal pathway functioning is lost in cancers of the bladder and prostate. Targeting death receptors directly through synthetic ligand administration and blocking downstream inhibitor molecules with siRNA or antisense oligonucleotides represent novel therapeutic strategies under development.

CONCLUSIONS: Research into the death receptor pathways has demonstrated the key role that pathway aberrations have in the initiation and progression of malignancies of the bladder, prostate and kidney. This new understanding has resulted in exciting approaches to restore the functionality of these pathways as a novel therapeutic strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of gene function through RNA interference (RNAi)-based reverse genetics in plant parasitic nematodes (PPNs) remains inexplicably reliant on the use of long double-stranded RNA (dsRNA) silencing triggers; a practice inherently disadvantageous due to the introduction of superfluous dsRNA sequence. increasing chances of aberrant or off-target gene silencing through interactions between nascent short interfering RNAs (siRNAs) and non-cognate mRNA targets. Recently, we have shown that non-nematode, long dsRNAs have a propensity to elicit profound impacts on the phenotype and migrational abilities of both root knot and cyst nematodes. This study presents, to our knowledge for the first time, gene-specific knockdown of FMRFamide-like peptide (flp) transcripts, using discrete 21 bp siRNAs in potato cyst nematode Globodera pallida, and root knot nematode Meloidogyne incognita infective (J2) stage juveniles. Both knockdown at the transcript level through quantitative (q)PCR analysis and functional data derived from migration assay, indicate that siRNAs targeting certain areas of the FMRFamide-like peptide (FLP) transcripts are potent and specific in the silencing of gene function. In addition, we present a method of manipulating siRNA activity through the management of strand thermodynamics. Initial evaluation of strand thermodynamics as a determinant of RNA-induced Silencing Complex (RISC) strand selection (inferred from knockdown efficacy) in the siRNAs presented here suggested that the purported influence of 5' stand stability on guide incorporation may be somewhat promiscuous. However, we have found that on strategically incorporating base mismatches in the sense strand of a G. pallida-specific siRNA we could specifically increase or decrease the knockdown of its target (specific to the antisense strand), presumably through creating more favourable thermodynamic profiles for incorporation of either the sense (non-target-specific) or antisense (target-specific) strand into a cleavage-competent RISC. Whilst the efficacy of similar approaches to siRNA modification has been demonstrated in the context of Drosophila whole-cell lysate preparations and in mammalian cell cultures, it remained to be seen how these sense strand mismatches may impact on gene silencing in vivo, in relation to different targets and in different sequence contexts. This work presents the first application of such an approach in a whole organism; initial results show promise. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin-12 (IL-12), p80, and IL-23 are structurally related cytokines sharing a p40 subunit. We have recently demonstrated that celecoxib and its COX-2-independent analogue 4-trifluoromethyl-celecoxib (TFM-C) inhibit secretion but not transcription of IL-12 (p35/p40) and p80 (p40/p40). This is associated with a mechanism involving altered cytokine-chaperone interaction in the endoplasmic reticulum (ER). In the present study, we found that celecoxib and TFM-C also block secretion of IL-23 (p40/p19 heterodimers). Given the putative ER-centric mode of these compounds, we performed a comprehensive RTPCR analysis of 23 ER-resident chaperones/foldases and associated co-factors. This revealed that TFM-C induced 1.5-3-fold transcriptional up-regulation of calreticulin, GRP78, GRP94, GRP170, ERp72, ERp57, ERdj4, and ERp29. However, more significantly, a 7-fold up-regulation of homocysteine-inducible ER protein (HERP) was observed. HERP is part of a high molecular mass protein complex involved in ER-associated protein degradation (ERAD). Using co-immunoprecipitation assays, we show that TFM-C induces protein interaction of p80 and IL-23 with HERP. Both HERP siRNA knockdown and HERP overexpression coupled to cycloheximide chase assays revealed that HERP is necessary for degradation of intracellularly retained p80 by TFM-C. Thus, our data suggest that targeting cytokine folding in the ER by small molecule drugs could be therapeutically exploited to alleviate in appropriate inflammation in autoimmune conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro-(mi)RNAs play a pivotal role in the developmental regulation of plants and animals. We reasoned that disruption of normal heterochronic activity in differentiating Meloidogyne incognita eggs may lead to irregular development, lethality and by extension, represent a novel target for parasite control On silencing the nuclear RNase III enzyme drosha, a critical effector of miRNA maturation in animals, we found a significant inhibition of normal development and hatching in short interfering (sORNA-soaked M incognita eggs Developing juveniles presented with highly irregular tissue patterning within the egg, and we found that unlike our previous gene silencing efforts focused on FMRFamide (Phe-Met-Arg-Phe-NH2)-like peptides (FLPs), there was no observable phenotypic recovery following removal of the environmental siRNA. Aberrant phenotypes were exacerbated over time, and drosha knockdown proved embryonically lethal Subsequently, we identified and silenced the drosha cofactor pasha, revealing a comparable inhibition of normal embryonic development within the eggs to that of drosha-silenced eggs, eventually leading to embryonic lethality To further probe the link between normal embryonic development and the M. incognita RNA interference (RNAi) pathway, we attempted to examine the impact of silencing the cytosolic RNase III enzyme dicer. Unexpectedly, we found a substantial up-regulation of dicer transcript abundance, which did not impact on egg differentiation or hatching rates. Silencing of the individual transcripts in hatched J2s was significantly less successful and resulted in temporary phenotypic aberration of the J2s. which recovered within 24 h to normal movement and posture on washing out the siRNA. Soaking the J2s in dicer siRNA resulted in a modest decrease in dicer transcript abundance which had no observable impact on phenotype or behaviour within 48 h of initial exposure to siRNA. We propose that drosha, pasha and their ancillary factors may represent excellent targets for novel nematicides and/or in planta controls aimed at M incognita, and potentially other parasitic nematodes, through disruption of miRNA-directed developmental pathways. In addition, we have identified a putative Mi-en-I transcript which encodes an RNAi-inhibiting siRNA exonuclease We observe a marked up-regulation of MI-en-I transcript abundance in response to exogenously introduced siRNA, and reason that this may impact on the interpretation of RN/NI-based reverse genetic screens in plant parasitic nematodes. (C) 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.