192 resultados para Shake
Resumo:
El trabajo del Proyecto Fin de Carrera consiste en el análisis de la formación de los distintos abanicos aluviales localizados en la provincia de Murcia, entre las ciudades de Lorca y Totana y su entorno inmediato, es decir, la Sierra de la Tercia al NO y parte de la depresión del Guadalentín al SE. Se comprobará, como objetivo destacado, si a partir de los datos obtenidos se puede determinar la degradación de los abanicos aluviales afectados por fallas. Inicialmente se realiza un estudio del terreno, con unos datos previos de traza de falla, marcando en él posibles indicios del paso, o no, de la falla en esa zona. Apoyándonos en una parte del trabajo desarrollado en el marco del proyecto del plan nacional de I+D denominado “Searching the record of past earthquakes in South Iberia: Advanced technologies in terrestrial and marine paleoseismology” (SHAKE), los datos con los que se ha trabajado en este proyecto se obtuvieron mediante la realización, en agosto del 2013, de un vuelo usando tecnología LiDAR en combinación con técnicas de Fotogrametría Digital que incorporan imágenes aéreas proporcionadas por el Instituto Geográfico Nacional (PNOA 2010) de la Región de Murcia. La tecnología LiDAR (Light Detection And Ranging) se trata de una técnica geofísica de mapeo por barrido que consta de un sensor láser aerotransportado que escanea la superficie terrestre recogiendo millones de medidas de distancia entre el sensor y el objeto, cuya posición es calculada por GPS diferencial y un sistema de navegación inercial. Cada pulso de láser toma múltiples medidas de distancia a lo largo de un solo haz, con el primer retorno desde la parte superior de la vegetación local, y el último desde la superficie del suelo. El resultado es una nube de puntos a partir de la cual se desarrollan los MDT utilizando el programa MDTopX. Este vuelo (correspondiente a la falla de Alhama) ocupa una extensión aproximada de 282 km2 y un perímetro de vuelo de 139 km. Para obtener una cobertura LiDAR lo más densa posible, se planificó el vuelo a una altura de 1500 metros sobre el terreno, obteniendo así una densidad media de 4 puntos/m2 y una separación entre puntos promedio de 0,5 m. A continuación se crean diferentes mapas (pendientes, orientaciones y curvas de nivel) de los cuales se obtiene toda la información posible para realizar una clasificación de los diferentes indicios, según se explica más adelante. Posteriormente se realiza una nueva traza de los abanicos aluviales usando los resultados anteriores y estableciendo una clasificación de su época, materiales y grado de degradación, entre otros.
Resumo:
We have examined the positive influence of human constant regions on the folding and bacterial expression of active soluble mouse immunoglobulin variable domains derived from a number of catalytic antibodies. Expression yields of eight hybridoma- and myeloma-derived chimeric Fab fragments are compared in both shake flasks and high density fermentations. In addition the usefulness of this system for the generation of in vivo expression libraries is examined by constructing and expressing combinations of heavy and light chain variable regions that were not selected as a pair during an immune response. A mutagenesis study of one of the recombinant catalytic Fab fragments reveals that single amino acid substitutions can have dramatic effects on the expression yield. This system should be generally applicable to the production of Fab fragments of catalytic and other hybridoma-derived antibodies for crystallographic and structure-function studies.
Resumo:
A levedura Yarrowia lipolytica tem sido muito investigada, especialmente por ser um microrganismo oleaginoso, ou seja, capaz de acumular grandes quantidades de lipídios, o que ocorre majoritariamente em organelas denominadas partículas lipídicas. Estes lipídios apresentam várias potenciais aplicações biotecnológicas, como por exemplo na produção de óleo microbiano (single cell oil) e na produção de biodiesel. Durante este projeto de mestrado, objetivou-se estudar a fisiologia de duas linhagens da levedura Y. lipolytica, sendo uma tradicionalmente estudada pela comunidade científica internacional (linhagem w29) e outra isolada da Baía da Guanabara, no Rio de Janeiro (linhagem IMUFRJ 50682). Foram realizados cultivos em frascos agitados tipo Erlenmeyer com defletores tampados com algodão (volume total 500 mL, volume de meio 100 mL, 28 oC e 200 rotações por minuto), durante os quais foi possível: 1) escolher um meio de cultivo de composição totalmente definida, com tiamina como único fator de crescimento, adequado a estudos de fisiologia quantitativa com esta levedura; 2) verificar que Y. lipolytica não é capaz de crescer com sacarose ou xilose como única fonte de carbono; 3) verificar que Y. lipolytica cresce com velocidade específica de crescimento máxima (Máx) de 0,49 h-1 num meio complexo contendo glicose, extrato de levedura e peptona (meio YPD), 0,31 h-1 em meio definido com glicose como única fonte de carbono e 0,35 h-1 no mesmo meio, mas com glicerol como única fonte de carbono, sem excreção de metabólitos para o meio de cultivo; 4) verificar que ocorreu limitação por oxigênio nos cultivos em frasco agitado, sendo este o motivo pelo qual as células deixaram de crescer exponencialmente; 5) verificar que o uso de ureia, em vez de sulfato de amônio, como fonte de nitrogênio, contribui para uma variação menor do pH durante os cultivos, sem prejuízo ao crescimento da levedura; 6) observar que, ao se restringir a oferta de nitrogênio à levedura (aumento da relação C/N inicial no meio de 12,6 para 126), as células têm sua morfologia alterada e apresentam maior quantidade de partículas lipídicas; 7) determinar uma composição elementar para a biomassa de Y. lipolytica (CH1,98O0,58N0,13), em que os átomos de carbono encontram-se em média mais reduzidos do que na biomassa de leveduras como Saccharomyces cerevisiae e Dekkera bruxellensis. Foram também realizados cultivos em biorreator em batelada (1 L de volume útil, 28 oC, aerobiose plena e pH controlado em 5,0), durante os quais foi possível: a) estabelecer um protocolo de cultivo para Y. lipolytica em biorreator (que envolvem agitação mecânica, aeração e uso de anti-espumante, entre outras diferenças em relação aos cultivos em frasco); b) confirmar os valores dos principais parâmetros fisiológicos apresentados por esta levedura, anteriormente obtidos a partir de cultivos em frasco; c) confirmar que o fator de conversão de substrato a células (Yx/s) é maior para cultivos realizados com glicerol como fonte única de carbono (0,53 g/g para a linhagem IMUFRJ 50682), do que com glicose (0,48 g/g para a mesma linhagem). Finalmente, cultivos realizados em quimiostato com glicerol como fonte de carbono e energia, limitados por amônio (fonte de nitrogênio, relação C/N 126), às vazões específicas de 0,25 h-1 e 0,15 h-1, permitiram observar que o número de partículas lipídicas por célula de Y. lipolytica permaneceu em torno de 2 em ambas as situações e houve uma diminuição no teor de nitrogênio nas células quando a velocidade específica de crescimento diminuiu de 0,25 para 0,15 h-1.
Resumo:
From the Executive Summary. Europe’s financial and sovereign debt crises have become increasingly interconnected. In order to break the negative feedback loop between the two, the EU has decided to create a common supervisory framework for the banking sector: the Single Supervisory Mechanism (SSM). The SSM will involve a supervisory system including both the national supervisors and the European Central Bank (ECB). By endowing the ECB with supervisory authority over a major part of the European banking sector, the SSM’s creation will result in a shake-up of the way in which the European financial sector is being supervised. Under the right circumstances, this could be a major step forward in addressing Europe’s interconnected crises.
Resumo:
International trade in textiles and apparel has, as of January 1, 2005, been set free from the very intricate Multi-Fiber textile and apparel quota Arrangement (MFA). This event has raised many uncertainties about the new international trade climate and has placed enormous pressure on China as the expected clear cut beneficiary of this liberalization.' Other countries considered to be major contenders include Vietnam which also has a large population employed in the textile and apparel (T&A) sector. Since the old quota system had provided a certain degree of market certainty to competing T&A producers, will the new free trade environment lead to a shake out where mass producers with large economies of scale dominate the new reality? The removal of T&A quotas will create opportunities for Vietnam and China along with other developing countries, but it will also expose them to additional competition from each other. The outcome of this competition will depend on the demand in the US, the ability of the exporting countries to differentiate their exports and on their ability to transfer additional resources to expand domestic output in the direction of the new 'free market signals' and away from rent seeking objectives. Obviously, exporting countries that adjust to this new environment quickly will improve their competitiveness, and will be the new beneficiaries of a quota free international trade in textiles and apparel. This paper attempts to shed some light on the differences and similarities in the responses of Chinese and Vietnamese T&A sectors to this new environment. It first focuses on the demand side attempting to determine whether or not Chinese and Vietnamese T&A items, formally under quota control, are substitutes or compliments. On the supply side, the paper focuses on institutional differences between each country's T&A sectors, the different domestic government policies that have contributed to their growth and the unique cultural differences which will determine the future progress in each country's T&A sectors.
Resumo:
Signed: Roger I. McDonough, chairman, Curtis G. Shake, member, John W. Yeager, member.
Resumo:
Top Row: Maura P. Boran, Michelle M. Bernier, Pamela S. Reed, Catherine G. Dollries, Dorinda K. Nance, Sheila M. Raftery, Sandra J. Toner, Nancy E. Naeckel, Jill M. Cornell, Amy C. Wikol, Valerie A. Quaderer, Debra A. Davis, Beth I. Craigie, Lynne L. Stallworth, Elizabeth Foote
Row 2: Jill A. Stockwell, Katherine A. Allen-Bridson, Elizabeth J. Henry, Yvonne M. Levernois, Kristen Ligness, Karen Riffel, Carol Hayes, Lori Follmer, Laura Risto, Lisa Crouch, Kelli J. Chandler, Debra L. Browning, Cassandra L. Milne, Venus M. Varner
Row 3: Tamara D. Haas, Betsy A. Mahlke, Linda D. Dillard, Rebecca A. Miller, Julie A. Hatch, Kimberly E. Kinning, Elizabeth A. Bole, Sharon Szetela
Row 4: Jill Y. Frye, C. Holly Trentacoste, Hristine S. Cavanaugh, Shari W. Goldstein
Row 5: Lisa A. Danto, Laura L. Greig, Kristen L. Jacobus, Mary E. Zukowski, Tracy L. Park, Alicia L. Hempstead
Row 6: Catherine A. Mehall, Leigh A. Baguley, Heide Milbrandt-Godke, Tina Vasher, Cindy L. Bishop, Jayne C. Grun
Row 7: Paula M. Daoust, Cindy T. Cassidy, Sally J. Williams, Theresa Harris, Cheryl E. Easley, Janice B. Lindberg, Rhetaugh G. Dumas, Sally A. Sample, Shake Ketefian, Lori S. Smith, Teresa L. O'Brien, Lauren A. Christoff, Susan R. Stein
Row 8: Amy L. Manley, Jennifer L. Elie, Linda L. Grabowski, Cheryl L. Pavlik, Dana S. Berry, Kriste L. Fedon, Lynn M. Shute, Kathleen J. Burns, Suzanne L. Farhat, Kathryn E. Grant, Catharina M. Ojert, Laurie A. Klemczak, Caroline E. Broida, Mary M. Heikkinen
Row 9: Shelley A. Howington, Rita A. Mclemore, Shirley A. Stratton, Laura A. Sweeney, Bonnie L. Woods, Mary D. Wheatley, Colleen M. Brown, Ilze E. Sturis, Karen A. Gilbert, Amy L. Mayne, Jennifer L. Borucki, Connie L. Passon, Caryn A. Spielman, Judy L. Buhler
Resumo:
Top Row: Lynn L. Applin, Amy Benner, Paula Broderick, Lisa B. Cohan, Catherine Collard, Beth A. Crawford, Cathleen M. Cupal, Andrea De Agoslino, Marivi G. Del Rosario, Patricia A. Dork, Nancy Farrington, Susan Foltz, Holly Franckowiak, Mary Franklin
Row 2: Kelly Garlow, Kathleen Gold, Renee Harris, Jody Becsey, Susan Bowman, Ann Marie Francel, Shelia Remy Smith, Sharon L. Holewinski, Colleen Kennedy, Dee Dee Hebert, Carolyn A. Hejkal, Wendy L. Hepworth
Row 3: Vicloria A. Hershey, Laura A. Hines, Jean Horner, Kimberly J. Howe, Joan L. Ilseman, Mary Jo Jay
Row 4: Suzanne Jennings, Suzanne Johnson, Janet Kaplan, Ann V. Kealy, Mary King, Lisa M. Kluk, Jane G. Kromer, Michelle Lajiness, Donna LaRoy, Christine Y. Lee
Row 5: Heidi Lewis, Betsy Livingston, Leslie Loll, Karen B. Majeske, Rita A. Markel, Megan McDonald, Sara J. McKenna, Jacquelin Merva, Monique A. Michael, Barbara Mueller
Row 6: Sandra Nelson, Barbara Nemenzik, Sherry Novak, Kristin Olson, Roberta A. Paas-Duda, Janet Patterson, Michelle L. Pecot, Dawn M. Popovics, Elizabeth Powaser, Cynthia J. Rabette
Row 7: Julie Ray, Susan M. Rice, Anne L. Richardson, Nancy Rockwell, Rhetaug G. Dumas, Cheryl E. Easley, Shake Ketefian, Janice B. Lindberg, Ruth E. Rogers, Nancy Schultz, Jean Schuster, Jean Scicluna
Row 8: Kathleen A. Sobczak, Mary Sokolik, Cheryl Stoyka, Vickie T. Sullivan, Susan A. Thompson, Margaret Venglarik, Sharon L. Wagner, Dorathy J. Washington, John J. Williams, Linda S. Wineland, Yvette L. Winia, Jody Wiser, Shannon H. Wright
Resumo:
Top Row: Douglas G. Pointon, Anne M. Laliberte, Anne T. Reaume, Karen R. Anderson, Margaret A. Mehall, Laura Meintel(Cepko), Sharon M. Milberger, Felicia I. Kle??, Pamela J. DcKeyser, Kathryn G. Maudlin, Mary C. Downey, Julie A. Gergen, Anne K. Hubling, Helen Mourao, Deborah L. Dubrul, Sarah E. Whorf
Row 2: Andrea Mitchell, Karen E. Grost, Paula V. Nersesian, Kelly A. Fleming, Mary Beth Morton, Lynda L. Cooley, Cynthia A. Wandzel, Deborah L. Bach, Karen A. Schwartz, Rhonda G. Pasma, Lesley M. Shafer, Michelle A. Kauer, Mary Jo Raftery, Carol A. Hammell, Josephine G. Ratcliffe
Row 3: Shon A. Pilarski, Julie S. Peritz, Terri L. McPherson, Tina T. chandler, Janet C. Pinkerton, Rosanna M. Knapp, Lisa A. Krukowski, Madelyn L. Nichols, Jaleh Shafii, Elizabeth A. Beer, Molly A. Finn, Dyann E. Botsford, Kathryn J. Meier, Angela L. Bruder (Crane), Herlinda Olive-Downs, Laura B. Bailey
Row 4: Laura L. Brooks, Lisa K. Feezell
Row 5: Cindy L. Harvey, Kerri A. Bacsanyi, Diane R. Cepko, Sheila E. Falk, Marylin A. Jeromin, Marianne Gerard, Sharon L. Podeszwa, Lynette A. LaPratt, Mary Ann Williams, Diana L. Faulk, Christine L. Henriksen, Sharon M. LaMacchia
Row 6: Deborah A. ranazzi (Maxim), Debra J. Mitchell, Holly B. O'Brien, Elaine K. Hebda, Jeanne L. Bruff, Crystal M. Emery, Cleola Hinton, Kathleen T. Hutton, Holly L. Nelson, Karen F. Kraker
Row 7: Meghan A. Sweeney, Christine M. Olree, Marlynn J. Marroso, Toni L. Lowery, Catherine L. Carroll, Elisabeth A. Pennington, Shake Ketefian, Rhetaugh G. Dumas, Janice B. Lindberg, Marlene Rutledge, Kimberley A. Vnuk, Anne M. Walsh, Rae Ann Vander Weide, Cheryl L. Boyd
Row 8: Renee M. Marks, Janine M. Simon, Renee A. Bowles, Linda Kurpinski-Nabozny, Teresa E. Ohman, Joanna E. Bok, Jodi F. Siegel, Janeen M. Chebli, Susan M. Williamson, Mary M. Fedewa, Rose Marie Stacey, Angela J. DeWitt, Kim E. Whelan, Lyndall P. Miller
Row 9: Jean M. Dziurgot, Amy J. Elwart, Lorrie A. Sheck, Amy A. Plasman, Mary L. Schuette, Susan K. Bowen, Heather A. Woodward, Luann N. Richert, Laurie J. Schlukebir, Linda L. Stevenson(Said), Carolyn N. Hartke, Rebecca L. Evans, Kathryn A. Savage, Kathryn A. Sailus (Linden), Heidi Deininger, Jennifer J. Eppley
Resumo:
Top Row: Clare L. Allen, Kathryn M. Antekeier, Debra Ayanian, Kristin E. Baker, Lynn A. Bluck, Linda A. Bochenek, Samatha Brennan, Julie A. Coburn, Anne E. Cooksey, Susan L. Cross, Kimberli S. Darvishian, Natalie, J. Dichtiar, Joanne M. Dork
Row 2: Mary K. Emerson, Marion A. Ferguson, Amy S. Fuhst, JAckie Vicari, Patti Geiman, Denise B. Sorenson, Lisa Maastricht, Karen L. Bloom, Natalie R. Geiss, Elizabeth A. Hamann, Liesl M. Hintermaier
Row 3: Cynthia M. Hubert, Mercedes Castro, Irene Hundt
Row 4: Kris A. Hurley, Katherine A. Jeffery, Kathy M. Jhung, Rebecca J. Kantor, Denise J. Kehrer, Colleen E. Kelly
Row 5: Judy A. Kettenstock, Rhonda L. Kinney, Kimberly Klarich, Kimberly J. Kdning, Dianne M. Kraft, Brenda M. LaChapelle
Row 6: Lavonne L. Lang, Laurie A. Langwerowski, Rebecca S. Leak, Sally Sample, Violet Barkauskas, Rhetaugh G. Dumas, Shake Ketefian, Janice B. Lindberg, Elisabeth Pennington, Sharon A. Libby, Bonnie M. McDonald, Patricia A. Mehall
Row 7: Kristen K. Miller, Kelley L. Ong, Alice I. Paik, Michelle L. Pardee, Edith H. Price, Anke Winkler-Prins, Lori L. reisig, Camille A. Rogell, Mindy A. Rosenberg, Richard E. Ross, Julie A. Sarotte, Laura A. Schippers, Rose M. Schliska, Marilyn H. Schwartz
Row 8: Heidi Simonelli, Victoria J. Sizemore, Diane L. Sorenson, Deborah R. Sproul, Katherine Stewart, Kim M. Strong, Barbara J. Sullivan, Pamela S. Taukert, Kristin A. Treash, Kimberly Vander Heuvel, Sherry Vanootighem, Annmarie Veraldi, Idella A. Wesselman
Resumo:
Top Row: Mary D. Acosta, Stephanie A. Alexovich, Lisa K. Astalos, Sandra L. Barbish, Jaine Bieda, Jennifer L. Blair, Victoria L. Brace, Debbie R. Brown, Sandra D. Carlson, Timothy J. Cockerham, Polly A. Cook, Suzanne M. Delisio, Jefferey Deloach
Row 2: Susan L. Dill, Tami Dykstra, Roberta E. Figgs, Roberta Jo Franzese, Dianer Szczerowski, Kimberly M. Schymik, Michelle F. Bingham, Lynnette A. Golen, Paola G. Pieri, Donna L. Fordanich, Teri L. Freedman, Kara L. Gathmann
Row 3: Marilyn S. Granner, Ann Marie Hartmus, Melissa Hoheb, Susan M. Hutchins
Row 4: Amy S. Jacobs, Renee M. Jannette, Wendy J. Jenuwine, Lori B. Kantor
Row 5: Kristine E. Karfis, Jenny G. Kist, Susan M. Kistka, Kaye M. Kowalske, Marilyn A. Krage, Roberta E. Kumm
Row 6: Ianya A. Lattimore, Andrea S. Lipian, Wendy J. Lipinski, Wendi M. Lisman
Row 7: Susan E. Little, Donna M. Markos, Rita S. Mayle, Lynn M. Mccall, Nancy J. Montange, Aimee J. Myers
Row 8: Clare H. Nagle, Michelle L. Noble, Janice B. Lindbers, Violet Barkauskas, Rhetaugh G. Dumas, Beverly Jones, Shake Kettfian, Elisabeth Pennington, Joyce V. Perry, Darlene L. Phelps
Row 9: Donna M. Piccolo, Lisa A. Richmond, Lisa A. Rowlison, Brent E. Runyon, Rebecca A. Seiffert, Lucinda E. Smith, Amy E. Spangler, Dan C. Steele, Beth Stephens, Kim D. Tiedrich, Lisa J. Wallace, Jennifer P. York, Christine C. Zielke
Resumo:
Top Row: Lisa A. Anton, Karen M. Banish, Sherry L. Bendele, Lori Bishop, Rossana Biundo, Jennifer Brooks, Stefanie J. Brown, Kimberly J. Coleman, Christine M. Decker, Mary Jo Diebold, Molly Donohue, Mary C. Dubois, Meggan C. Ebert
Row 2: Michelle Fox, Ann Marie Gergely, Nina N. Giglio, Stephen Gniewek, Jennifer K. Gollon, Laura E. Gregorius, Shiree A. Hamilton, Corinne R. Hardecki, Yoline M. Hargrave, Raina C. Hartitz, Dana M. Hocking, Andrea E. Jarrett
Row 3: Nancy Johnson, Harjot Kaur, Doreen M. Kinney, Kristine Boyle, Michele Phillips, Anthony Stewart, Pamela Blumson, Lisa Rudin, Lisa Eby, Christina Koehlmann, Julie A. Kolar, Shelly M. Kraiza
Row 4: Cindy Kvarnberg, Beth Anne Lannan, Martha Lasley, James A. Lowery
Row 5: Eileen M. Lucier, Anne Marie Lutostanski, Crystal Tchoryk, Kathy Kline, Donna L. Marshall, Mary C. Maxim
Row 6: Melinda J. Mc Calla, Carolyn Mclean, Molly B. Meyersohn, Christine L. Nersesian, Ann-Marie Nosotti
Row 7: Darlene D. Osemlak, Francine D. Paglia, Danee L. Paullin, Shake Ketefian, Janice B. Lindberg, Rhetaugh G. Dumas, Violet Barkauskas, Beverly Jones, Elisabeth Pennington, Jill L. Pierpont, Marie E. Rosenburg, Rebecca L. Rotole
Row 8: Carla D. Rouse, Merilynne H. Rush, Bernadette Michelle Santos, Stephanie A. Schaltz, Colleen M. Seastrom, Anita M. Shedlock, Judith A. Skonieczny, Alice Skumautz, Nancy A. Standler, Kristine Stoetzer, Annaflor O. Suan, Lynn E. Taylo
Row 9: Renee M. Thibodeau, Kirsten M. Thornquist, Lisa A. Treash, Lisa Marie Warriner, Miriam Beth Weiner, Teresa Wen, Martha Hill Wenzler, Melissa K. White, Denise M. Williams, Christina L. Wroubel, Jamie K. Yeulett, Sarah Jo York, Jennifer Zolinski
Resumo:
Top Row: Lisa M. Badalament, Heidi S. Bailey, Bonita Ballard, Betsy M. Bateman, Virginia Blackmer, Andrea L. Bonfield, Michelle L. Brown, Jane M. Christie, Gina M. Connolly, Matthew Cornell
Row 2: Mary M. Daugherty, Nancy L. Dewey, Linnette Drzewiecki, Jennifer Farah, Kelly S. Fonger, Yolanda Gardner, Kimberly A. Germain, Kelley Goetz, Laura M. Gonzalez, Melissa Gorr, Julie A. Hale, Jennifer Henstock
Row 3: Charles Houghtby III, Jennifer Hughes, Jill C. Jennings, Renee Manshardt, Jill A. Holquist, Paula R. Cowall, Kristen A. George, Michelle Ingram, Amy Jacobs
Row 4: Tara James, David Jansma, Debra A. Jorgenson, Sherry Keener
Row 5: Karen L. Kelley, Sunnah Kim, Tina Koonter-Banks, Jennifer Kratt
Row 6: Cynthia L. Lazaros, Christine Morelli, Charlotte Murphy, Sharon K. Norton
Row 7: Deborah Oliverio, Karla J. Pontier, Nicole Pruett, Laura Rankin, Jill E. Read, Diane Rosati
Row 8: Katherine E. Ross, Lisa Rubin, Lorie K. Sandberg, Violet Barkauskas, Janice Lindberg, Shake Ketefian, Elisabeth Pennington, Beverly Jones, Donita M. Shaum, Marcie S. Skinner, Julie M. Smallegan
Row 9: K. Christy Spencer, Danette L. Starr, Pamela S. Steele, Dena Stempien-Runyon, Jennifer J. Treacy, Patrica Van Maanen, Roberta Wahl, Marie A. White, Kim Wiersma, Wendy Williams, Dana Wilson
Resumo:
In this study we describe optimization of polyethylenimine (PEI)-mediated transient production of recombinant protein by CHO cells by facile manipulation of a chemically defined culture environment to limit accumulation of nonproductive cell biomass, increase the duration of recombinant protein production from transfected plasmid DNA, and increase cell-specific production. The optimal conditions for transient transfection of suspension-adapted CHO cells using branched, 25 kDa PEI as a gene delivery vehicle were experimentally determined by production of secreted alkaline phosphatase reporter in static cultures and recombinant IgG(4) monoclonal antibody (Mab) production in agitated shake flask cultures to be a DNA concentration of 1.25 mu g 10(6) cells(-1) mL(-1) at a PEI nitrogen: DNA phosphate ratio of 20:1. These conditions represented the optimal compromise between PEI cytotoxicity and product yield with most efficient recombinant DNA utilization. Separately, both addition of recombinant insulin-like growth factor (LR3-IGF) and a reduction in culture temperature to 32 degrees C were found to increase product titer 2- and 3-fold, respectively. However, mild hypothermia and LR3-IGF acted synergistically to increase product titer 11-fold. Although increased product titer in the presence of LR3-IGF alone was solely a consequence of increased culture duration, a reduction in culture temperature post-transfection increased both the integral of viable cell concentration (IVC) and cell-specific Mab production rate. For cultures maintained at 32 degrees C in the presence of LR3-IGF, IVC and qMab were increased 4- and 2.5-fold, respectively. To further increase product yield from transfected DNA, the duration of transgene expression in cell populations maintained at 32 C in the presence of LR3-IGF was doubled by periodic resuspension of transfected cells in fresh media, leading to a 3-fold increase in accumulated Mab titer from similar to 13 to similar to 39 mg L-1. Under these conditions, Mab glycosylation at Asn297 remained essentially constant and similar to that of the same Mab produced by stably transfected GS-CHO cells. From these data we suggest that the efficiency of transient production processes (protein output per rDNA input) can be significantly improved using a combination of mild hypothermia and growth factor(s) to yield an extended activated hypothermic synthesis.
Resumo:
In this study we investigate the coordination between rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow joint-complex, while manipulating the intersegmental dynamics by means of a 2-degrees of freedom (df) robot arm. We hypothesized that constraints imposed by the structure of the neuromuscular-skeletal system would (1) result in predominant pattern(s) of coordination in the absence of interaction torques and (2) influence the capabilities of participants to exploit artificially induced interaction torques. Two experiments were conducted in which different conditions of interaction torques were applied on the SP-axis as a function of FE movements. These conditions promoted different patterns of coordination between the 2-df. Control trials conducted in the absence of interaction torques revealed that both the in-phase (supination synchronized with flexion) and the anti-phase (pronation synchronized with flexion) patterns were spontaneously established by participants. The predominance of these patterns of coordination is explained in terms of the mechanical action of bi-articular muscles acting at the elbow joint-complex, and in terms of the reflexes that link the activity of the muscles involved. Results obtained in the different conditions of interaction torques revealed that those neuromuscular-skeletal constraints either impede or favor the exploitation of intersegmental dynamics depending on the context. Interaction torques were indeed found to be exploited to a greater extent in conditions in which the profiles of interaction torques favored one of the two predominant patterns of coordination (i.e., in-phase or anti-phase) as opposed to other patterns of coordination (e.g., 90 degrees or 270 degrees). Those results are discussed in relation to recent studies reporting exploitation of interaction torques in the context of rhythmic movements.