960 resultados para Search space reduction
Resumo:
Phytoplankton cell size is important to biogeochemical and food web processes. The goal of this study is to estimate phytoplankton cell size distribution from satellite imagery of spectral remote sensing reflectance (Rrs(lambda)). Previous studies have indicated phytoplankton size classes have distinctive absorption spectra despite the physiological and taxonomic variability within an assemblage. For this study, the chlorophyll specific absorption spectra for phytoplankton size class extremes, pico- and microphytoplankton, are weighted by the percent microplankton (Sfm) and are the basis of phytoplankton size retrieval from SeaWiFS imagery. Satellite retrievals of Sfm are done through implementation of a forward optical model look-up table (LUT) that incorporates the range of absorption and scattering variability due to phytoplankton size, chlorophyll concentration ([Chl]) and dissolved and detrital matter (acdm(443)) in the global ocean from which Rrs(lambda) is calculated by the radiative transfer software, Hydrolight. The Hydrolight modeled Rrs(lambda) options for a given combination of [Chl] and acdm(443) within the LUT vary only due to Sfm. For a given pixel, the LUT search space was limited by satellite imagery of [Chl] and acdm(443). Within the narrowed search space, SeaWiFS Rrs(lambda) was matched with the closest LUT Rrs(lambda) option and the associated Sfm was assigned. Thresholds at which changes in Rrs(lambda) due to Sfm could be discerned were established in terms of [Chl] and acdm(443). In situ high-precision liquid chromatography-derived estimates of cell size are used in conjunction with matched daily satellite estimates of Sfm for validation and agree well. A single month is displayed as an example of the Sfm retrieval.
Resumo:
Visual cluster analysis provides valuable tools that help analysts to understand large data sets in terms of representative clusters and relationships thereof. Often, the found clusters are to be understood in context of belonging categorical, numerical or textual metadata which are given for the data elements. While often not part of the clustering process, such metadata play an important role and need to be considered during the interactive cluster exploration process. Traditionally, linked-views allow to relate (or loosely speaking: correlate) clusters with metadata or other properties of the underlying cluster data. Manually inspecting the distribution of metadata for each cluster in a linked-view approach is tedious, specially for large data sets, where a large search problem arises. Fully interactive search for potentially useful or interesting cluster to metadata relationships may constitute a cumbersome and long process. To remedy this problem, we propose a novel approach for guiding users in discovering interesting relationships between clusters and associated metadata. Its goal is to guide the analyst through the potentially huge search space. We focus in our work on metadata of categorical type, which can be summarized for a cluster in form of a histogram. We start from a given visual cluster representation, and compute certain measures of interestingness defined on the distribution of metadata categories for the clusters. These measures are used to automatically score and rank the clusters for potential interestingness regarding the distribution of categorical metadata. Identified interesting relationships are highlighted in the visual cluster representation for easy inspection by the user. We present a system implementing an encompassing, yet extensible, set of interestingness scores for categorical metadata, which can also be extended to numerical metadata. Appropriate visual representations are provided for showing the visual correlations, as well as the calculated ranking scores. Focusing on clusters of time series data, we test our approach on a large real-world data set of time-oriented scientific research data, demonstrating how specific interesting views are automatically identified, supporting the analyst discovering interesting and visually understandable relationships.
Resumo:
Aberrant behavior of biological signaling pathways has been implicated in diseases such as cancers. Therapies have been developed to target proteins in these networks in the hope of curing the illness or bringing about remission. However, identifying targets for drug inhibition that exhibit good therapeutic index has proven to be challenging since signaling pathways have a large number of components and many interconnections such as feedback, crosstalk, and divergence. Unfortunately, some characteristics of these pathways such as redundancy, feedback, and drug resistance reduce the efficacy of single drug target therapy and necessitate the employment of more than one drug to target multiple nodes in the system. However, choosing multiple targets with high therapeutic index poses more challenges since the combinatorial search space could be huge. To cope with the complexity of these systems, computational tools such as ordinary differential equations have been used to successfully model some of these pathways. Regrettably, for building these models, experimentally-measured initial concentrations of the components and rates of reactions are needed which are difficult to obtain, and in very large networks, they may not be available at the moment. Fortunately, there exist other modeling tools, though not as powerful as ordinary differential equations, which do not need the rates and initial conditions to model signaling pathways. Petri net and graph theory are among these tools. In this thesis, we introduce a methodology based on Petri net siphon analysis and graph network centrality measures for identifying prospective targets for single and multiple drug therapies. In this methodology, first, potential targets are identified in the Petri net model of a signaling pathway using siphon analysis. Then, the graph-theoretic centrality measures are employed to prioritize the candidate targets. Also, an algorithm is developed to check whether the candidate targets are able to disable the intended outputs in the graph model of the system or not. We implement structural and dynamical models of ErbB1-Ras-MAPK pathways and use them to assess and evaluate this methodology. The identified drug-targets, single and multiple, correspond to clinically relevant drugs. Overall, the results suggest that this methodology, using siphons and centrality measures, shows promise in identifying and ranking drugs. Since this methodology only uses the structural information of the signaling pathways and does not need initial conditions and dynamical rates, it can be utilized in larger networks.
Resumo:
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Resumo:
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Resumo:
Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment.
Resumo:
A Síndrome da Apneia e Hipopneia Obstrutiva do Sono (SAHOS) é uma doença crónica, de carácter progressivo, que atinge cerca de 4% da população adulta. A obstrução parcial ou total das vias aéreas superiores durante o sono pode provocar quadros de hipopneia (uma redução do fluxo aéreo) ou apneia (cessação completa do fluxo aéreo). Os pacientes queixam-se de sonolência diurna excessiva, ronco durante a noite e além destes problemas sociais a preocupação pela redução de funções cognitivas que se podem desencadear, como memória, atenção, hipertensão pulmonar e insuficiência cardíaca. O Médico Dentista está habilitado para avaliar o espaço aéreo oro e nasofaringeo e diagnosticar, além da necessidade de correções dentárias, a presença de obstruções das Vias Aereas Superiores (VAS) orientando assim o seu tratamento. Além do exame clínico, o diagnóstico de distúrbios respiratórios do sono é baseado na história clínica, exame físico e confirmado através da polissonografia e da análise cefalométrica. Esta tem sido considerada como um método importante no diagnóstico, fornecendo características craniofaciais que permitem verificar a existência de pré-disposição de SAHOS. As avaliações com cefalometrias obtidas em telerradiografias em norma lateral é um recurso essencial para realizar o diagnóstico de distúrbios respiratórios do sono, desde que o profissional tenha domínio da técnica e da sua interpretação. Estes distúrbios são caracterizados por diferentes graus de diminuição do espaço das vias aéreas superiores, causado por factores anatómicos e funcionais, que podem ser analisados pelo profissional. A intervenção precoce torna-se crucial, pela diminuição da morbilidade, melhores resultados no tratamento, diminuição de gastos nos serviços de saúde e melhor qualidade de vida do paciente. O presente trabalho teve por objectivo realizar uma revisão bibliográfica sobre a importância da avaliação das vias aéreas superiores através da análise de grandezas cefalométricas obtidas de telerradiografias em norma lateral como padrão de diagnóstico para a identificação de distúrbios respiratórios do sono.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence, higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes for (sub-)fitness evaluation purposes are examined for two multiple-choice optimisation problems. It is shown that random partnering strategies perform best by providing better sampling and more diversity.
Resumo:
This paper examines the use of a hierarchical coevolutionary genetic algorithm under different partnering strategies. Cascading clusters of sub-populations are built from the bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations potentially search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the sub-populations on solution quality are examined for two constrained optimisation problems. We examine a number of recombination partnering strategies in the construction of higher-level individuals and a number of related schemes for evaluating sub-solutions. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
With the increasing complexity of today's software, the software development process is becoming highly time and resource consuming. The increasing number of software configurations, input parameters, usage scenarios, supporting platforms, external dependencies, and versions plays an important role in expanding the costs of maintaining and repairing unforeseeable software faults. To repair software faults, developers spend considerable time in identifying the scenarios leading to those faults and root-causing the problems. While software debugging remains largely manual, it is not the case with software testing and verification. The goal of this research is to improve the software development process in general, and software debugging process in particular, by devising techniques and methods for automated software debugging, which leverage the advances in automatic test case generation and replay. In this research, novel algorithms are devised to discover faulty execution paths in programs by utilizing already existing software test cases, which can be either automatically or manually generated. The execution traces, or alternatively, the sequence covers of the failing test cases are extracted. Afterwards, commonalities between these test case sequence covers are extracted, processed, analyzed, and then presented to the developers in the form of subsequences that may be causing the fault. The hypothesis is that code sequences that are shared between a number of faulty test cases for the same reason resemble the faulty execution path, and hence, the search space for the faulty execution path can be narrowed down by using a large number of test cases. To achieve this goal, an efficient algorithm is implemented for finding common subsequences among a set of code sequence covers. Optimization techniques are devised to generate shorter and more logical sequence covers, and to select subsequences with high likelihood of containing the root cause among the set of all possible common subsequences. A hybrid static/dynamic analysis approach is designed to trace back the common subsequences from the end to the root cause. A debugging tool is created to enable developers to use the approach, and integrate it with an existing Integrated Development Environment. The tool is also integrated with the environment's program editors so that developers can benefit from both the tool suggestions, and their source code counterparts. Finally, a comparison between the developed approach and the state-of-the-art techniques shows that developers need only to inspect a small number of lines in order to find the root cause of the fault. Furthermore, experimental evaluation shows that the algorithm optimizations lead to better results in terms of both the algorithm running time and the output subsequence length.
Resumo:
This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyperheuristic framework, a Tabu Search approach is employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course timetabling problems. This underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a different number of graph heuristics in two stages. We study this graph-based hyper-heuristic approach within the context of exploring fundamental issues concerning the search space of the hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in other hyper-heuristic research. These approaches are tested on both exam and course benchmark timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The results are within the range of the best results reported in the literature. The approach described here represents a significantly more generally applicable approach than the current state of the art in the literature. Future work will extend this hyper-heuristic framework by employing methodologies which are applicable on a wider range of timetabling and scheduling problems.
Resumo:
This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.
Resumo:
This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyperheuristic framework, a Tabu Search approach is employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course timetabling problems. This underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a different number of graph heuristics in two stages. We study this graph-based hyper-heuristic approach within the context of exploring fundamental issues concerning the search space of the hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in other hyper-heuristic research. These approaches are tested on both exam and course benchmark timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The results are within the range of the best results reported in the literature. The approach described here represents a significantly more generally applicable approach than the current state of the art in the literature. Future work will extend this hyper-heuristic framework by employing methodologies which are applicable on a wider range of timetabling and scheduling problems.
Resumo:
This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.