857 resultados para School mathematics
Resumo:
This paper describes an approach to introducing fraction concepts using generic software tools such as Microsoft Office's PowerPoint to create "virtual" materials for mathematics teaching and learning. This approach replicates existing concrete materials and integrates virtual materials with current non-computer methods of teaching primary students about fractions. The paper reports a case study of a 12-year-old student, Frank, who had an extremely limited understanding of fractions. Frank also lacked motivation for learning mathematics in general and interacted with his peers in a negative way during mathematics lessons. In just one classroom session involving the seamless integration of off-computer and on-computer activities, Frank acquired a basic understanding of simple common equivalent fractions. Further, he was observed as the session progressed to be an enthusiastic learner who offered to share his learning with his peers. The study's "virtual replication" approach for fractions involves the manipulation of concrete materials (folding paper regions) alongside the manipulation of their virtual equivalent (shading screen regions). As researchers have pointed out, the emergence of new technologies does not mean old technologies become redundant. Learning technologies have not replaced print and oral language or basic mathematical understanding. Instead, they are modifying, reshaping, and blending the ways in which humankind speaks, reads, writes, and works mathematically. Constructivist theories of learning and teaching argue that mathematics understanding is developed from concrete to pictorial to abstract and that, ultimately, mathematics learning and teaching is about refinement and expression of ideas and concepts. Therefore, by seamlessly integrating the use of concrete materials and virtual materials generated by computer software applications, an opportunity arises to enhance the teaching and learning value of both materials.
Resumo:
This paper reports on a study to measure the effectiveness of an integrated learning system (ILS) in improving mathematics achievement for low achieving Year 5 to 9 students. The study found that statistically significant gains on the integrated learning system were not supported by scores on standardised mathematics achievement tests. It also found that although student attitudes to computers decreased (significantly for some items), the students still liked the integrated learning system and felt that it had helped them to learn.
Resumo:
This study explores successful junior high school principals’ leadership practices for implementing the reformed mathematics curriculum in Taipei. Avolio and Bass’s (2002) full range leadership theory was used to record data through interviews and observations of five Taipei “Grade A” junior high school principals. Findings revealed that specific leadership practices linked to management by exception-active and contingent reward (transaction leadership), and individualised consideration and idealised influence (transformational) were considered effective for implementing reform measures. Ensuring principals are aware of effective measures may further assist reform agendas.
Resumo:
Gender and developmental differences in self-description, self-evaluation and self-esteem were investigated using 957 elementary school children in grades 3 to 7. Gender differences were found for six of the seven descriptive statements and for five of the seven evaluative statements. The major gender stereotypical findings from previous studies were replicated. Boys reported higher scores than girls on descriptive and evaluative statements about their physical abilities and mathematics, while girls reported higher scores on descriptive and evaluative statements about reading. Declines over time were noted for all self-evaluations except having good relations with peers and for global self-esteem, providing some support for the notion that the decline in self-concepts and self-esteem may be attributed to the children's perceptions of themselves becoming more accurate and less egocentric in line with their cognitive capacity to integrate external feedback realistically.
Resumo:
Generalising arithmetic structures is seen as a key to developing algebraic understanding. Many adolescent students begin secondary school with a poor understanding of the structure of arithmetic. This paper presents a theory for a teaching/learning trajectory designed to build mathematical understanding and abstraction in the elementary school context. The particular focus is on the use of models and representations to construct an understanding of equivalence. The results of a longitudinal intervention study with five elementary schools, following 220 students as they progressed from Year 2 to Year 6, informed the development of this theory. Data were gathered from multiple sources including interviews, videos of classroom teaching, and pre-and post-tests. Data reduction resulted in the development of nine conjectures representing a growth in integration of models and representations. These conjectures formed the basis of the theory.
Resumo:
This document reports on the Innovations Working Group that met at the 10th International Conference “Models in Developing Mathematics Education” from the 11-17th September 2009 in Dresden, Saxony. It briefly describes the over arching and consistent themes that emerged from the numerous papers presented. The authors and titles of each of the papers presented will be listed in Table 2.
Resumo:
This abstract is a preliminary discussion of the importance of blending of Indigenous cultural knowledges with mainstream knowledges of mathematics for supporting Indigenous young people. This import is emphasised in the documents Preparing the Ground for Partnership (Priest, 2005), The Indigenous Education Strategic Directions 2008–2011 (Department of Education, Training and the Arts, 2007) and the National Goals for Indigenous Education (Department of Education, Employment and Work Relations, 2008). These documents highlight the contextualising of literacy and numeracy to students’ community and culture (see Priest, 2005). Here, Community describes “a culture that is oriented primarily towards the needs of the group. Martin Nakata (2007) describes contextualising to culture as about that which already exists, that is, Torres Strait Islander community, cultural context and home languages (Nakata, 2007, p. 2). Continuing, Ezeife (2002) cites Hollins (1996) in stating that Indigenous people belong to “high-context culture groups” (p. 185). That is, “high-context cultures are characterized by a holistic (top-down) approach to information processing in which meaning is “extracted” from the environment and the situation. Low-context cultures use a linear, sequential building block (bottom-up) approach to information processing in which meaning is constructed” (p.185). In this regard, students who use holistic thought processing are more likely to be disadvantaged in mainstream mathematics classrooms. This is because Westernised mathematics is presented as broken into parts with limited connections made between concepts and with the students’ culture. It potentially conflicts with how they learn. If this is to change the curriculum needs to be made more culture-sensitive and community orientated so that students know and understand what they are learning and for what purposes.
Resumo:
This paper argues for a future-oriented, inclusion of Engineering Model Eliciting Activities (EngMEAs) in elementary mathematics curricula. In EngMEAs students work with meaningful engineering problems that capitalise on and extend their existing mathematics and science learning, to develop, revise and document powerful models, while working in groups. The models developed by six groups of 12-year students in solving the Natural Gas activity are presented. Results showed that student models adequately solved the problem, although student models did not take into account all the data provided. Student solutions varied to the extent students employed the engineering context in their models and to their understanding of the mathematical concepts involved in the problem. Finally, recommendations for implementing EngMEAs and for further research are discussed.
Resumo:
Engineering education for elementary school students is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to use the data to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results provide evidence that engineering model-eliciting activities can be successfully integrated in the elementary mathematics curriculum. These activities provide rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.
Resumo:
The increased recognition of the theory in mathematics education is evident in numerous handbooks, journal articles, and other publications. For example, Silver and Herbst (2007) examined ―Theory in Mathematics Education Scholarship‖ in the Second Handbook of Research on Mathematics Teaching and Learning (Lester, 2007) while Cobb (2007) addressed ―Putting Philosophy to Work: Coping with Multiple Theoretical Perspectives‖ in the same handbook. And a central component of both the first and second editions of the Handbook of International Research in Mathematics Education (English, 2002; 2008) was ―advances in theory development.‖ Needless to say, the comprehensive second edition of the Handbook of Educational Psychology (Alexander & Winne, 2006) abounds with analyses of theoretical developments across a variety of disciplines and contexts. Numerous definitions of ―theory‖ appear in the literature (e.g., see Silver & Herbst, in Lester, 2007). It is not our intention to provide a ―one-size-fits-all‖ definition of theory per se as applied to our discipline; rather we consider multiple perspectives on theory and its many roles in improving the teaching and learning of mathematics in varied contexts.
Resumo:
This paper first describes a new three-year, longitudinal project that is implementing engineering education in three middle schools in Australia (grade levels 7-9). This important domain is untapped in Australia. Hence, as a starting point, we conducted a context analysis to help situate engineering education in a school system. We report on this analysis with respect to findings from one of two literature-based surveys that gathered middle-school student responses in mathematics (n=172) and science (n=166) towards understanding their dispositions for engineering education. ANOVA indicated gender differences for 3 out of 23 items in both mathematics and science. In addition, the majority of students agreed or strongly agreed with 17 of the 23 survey items, however, there were some differences between mathematics and science. We conclude the paper with some recommendations for establishing engineering education in schools, including the development of partnerships among engineering and education faculties, school systems, and industry to develop contemporary engineering resources to support school-level mathematics, science, and technology.
Resumo:
This abstract provides a preliminary discussion of the importance of recognising Torres Strait Islander knowledges and home languages of mathematics education. It stems from a project involving Torres Strait Islander Teachers and Teacher Aides and university based researchers who are working together to enhance the mathematics learning of students from Years 4-9. A key focus of the project is that mathematics is relevant and provides students with opportunities for further education, training and employment. Veronica Arbon (2008) questions the assumptions underpinning Western mainstream education as beneficial for Aboriginal and Torres Strait Islander people which assumes that it enables them to better participate in Australian society. She asks “how de we best achieve outcomes for and with Indigenous people conducive to our cultural, physical and economic sustainability as defined by us from Indigenous knowledge positions?” (p. 118). How does a mainstream education written to English conventions provide students with the knowledge and skills to participate in daily life, if it does not recognise the cultural identity of Indigenous students as it should (Priest, 2005; cf. Schnukal, 2003)? Arbon (2008) states that this view is now brought into question with calls for both ways education where mainstream knowledge and practices is blended with Indigenous cultural knowledges of learning. This project considers as crucial that cultural knowledges and experiences of Indigenous people to be valued and respected and given the currency in the same way that non Indigenous knowledge is (Taylor, 2003) for both ways education to work.
Resumo:
This paper is a beginning point for discussing what the literature states about parents’ involvement in their children’s mathematics education. Where possible it will focus on Torres Strait Islander Peoples. Little is known about how Torres Strait Islander parents approach their children’s learning of mathematics and how important early mathematics is to mothers. What is known is that is they are keen for their children to receive an education that provides them with opportunities for their present and future lives. However, gaining access to education is challenging given that the language of instruction in schools is written to English conventions, decontextualised and disconnected from the students’ culture, community and home language. This paper discusses some of the issues raised in the literature about what parents are confronted with when making decisions about their children’s education.
Resumo:
In this chapter we review studies of the engagement of students in design projects that emphasise integration of technology practice and the enabling sciences, which include physics and mathematics. We give special attention to affective and conceptual outcomes from innovative interventions of design projects. This is important work because of growing international concern that demand for professionals with technological expertise is increasing rapidly, while the supply of students willing to undertake the rigors of study in the enabling sciences is proportionally reducing (e.g., Barringtion, 2006; Hannover & Kessels, 2004; Yurtseven, 2002). The net effect is that the shortage in qualified workers is having a detrimental effect upon economic and social potential in Westernised countries (e.g., Department of Education, Science and Training [DEST], 2003; National Numeracy Review Panel and National Numeracy Review Secretarial, 2007; Yurtseven, 2002). Interestingly, this trend is reversed in developing economies including China and India (Anderson & Gilbride, 2003).
Analysing preservice teachers' potential for implementing engineering education in the middle school
Resumo:
Engineering is pivotal to any country's development. Yet there are insufficient engineers to take up available positions in many countries, including Australia (Engineers Australia, 2008). Engineering education is limited in Australia at the primary, middle and high school levels. One of the starting points for addressing this shortfall lies in preservice teacher education. This study explores second-year preservice teachers' potential to teach engineering in middle school, following their engagement with engineering concepts in their science curriculum unit and their teaching of engineering activities to Year 7 students. Using a literature-based pretest-posttest survey, items were categorised into four constructs (ie. personal professional attributes, student motivation, pedagogical knowledge and fused curricula). Results indicated that the preservice teachers' responses had not changed for instilling positive attitudes (88%) and accepting advice from colleagues (94%). However, there was statistical significance with 9 of the 25 survey items (p<0.05) after the preservice teachers' involvement in engineering activities. Fusing engineering education with other subjects, such as mathematics and science, is an essential first step in promoting preservice teachers' potential to implement engineering education in the middle school.